

Association Vendéenne de Géologie

Inventaire des minéraux vendéens

CD - Diaporama format PPS

Collections minéralogiques de G. Bertet, A. Duret, J. Giraudeau, M. Jeanneau, C. Mahu et G. Mérand

Photographies : J. Chauvet et D. Loizeau - Réalisation : J. Chauvet

Sommaire

- 1. Présentation du CD-Rom
- 2. Localisation des sites minéralogiques sur une carte géologique de la Vendée
- 3. Liste des liens des différents sites minéralogiques
- 4. Liste des minéraux classés par ordre alphabétique
- 5. Cadre géologique et origine des minéraux inventoriés
- 6. Caractères des minéraux inventoriés

CD-Diaporama de l'inventaire de minéraux vendéens

Ce CD présente une sélection de photographies de l'inventaire des minéraux récoltés en Vendée depuis plusieurs décennies par plusieurs membres de l'Association Vendéenne de Géologie. Son objectif est de mettre en valeur et de faire connaître à un large public une partie du patrimoine géologique de la Vendée. Il n'a pas l'ambition d'être un traité de minéralogie.

La diversité des paysages géologiques vendéens et la succession des phénomènes géologiques depuis plus de 600 millions d'années ont engendré une diversité de minéraux. La récolte d'un minéral, d'une géode, a nécessité très souvent un long apprentissage, beaucoup de patience et de dextérité. L'échantillon récolté va souvent demander un minutieux travail de nettoyage pour mettre en valeur les minéraux essentiels et d'autres éléments souvent invisibles au cours de la récolte.

De magnifiques échantillons ont été souvent arrachés aux concasseurs des carrières et sont devenus des éléments de notre patrimoine, de beaux spécimens minéralogiques ont été prélevés dans des carrières définitivement fermées, d'autre part, la législation actuelle n'autorise plus l'accès dans la plupart des carrières. Ce patrimoine minéral mérite d'être présenté et préservé. Ce sont les témoins d'évènements géologiques très importants: volcanismes, surrection de chaînes de montagnes, plissements...Les minéraux constituant une roche, une géode, ont de longues histoires de plusieurs dizaines de millions d'années. Les roches « naissent », « vivent » et « meurent » et souvent les événements qu'elles nous racontent, quand on sait les interroger, sont loin d'être anodins, ce sont des tranches de vie de notre planète.

Les minéraux inventoriés appartiennent aux collections de Gérard Bertet, Alain Duret, Joseph Giraudeau, M. Jeanneau, Christian Mahu et Gérard Mérand. Les photographies ont été prises et traitées par Jean Chauvet et Dominique Loizeau. Le CD-Rom a été réalisé par Jean Chauvet.

L.Arrivé et J.Chauvet

2 formats de présentation : un format Powerpoint et un format PDF.

Navigation : des liens interactifs (mots soulignés) et des boutons d'action permettent de naviguer entre différents secteurs

Boutons d'action du diaporama: <u>liens</u>


Retour au sommaire

Retour aux liens et à la liste des sites minéralogiques

Caractères des minéraux

Liens

Localisation géographique

Liste alphabétique des minéraux (1)

Caractères des minéraux

Liste des sites minéralogiques

- Mervent p.6 87
- <u>Littoral vendéen</u> p. 88 195 2.
- 3. Chambretaud p. 196 - 239
- 4. Aizenay p. 240 - 245
- 5. Bazoges-en-Paillers et Bazoges-en-Pareds
- 6. Boufféré p. 246 - 265
- 7. Challans p. 266 - 277
- 8. Chantonnay p. 278 - 282
- 9. <u>Le Bernard</u> p. 283 - 286
- **10.** Le Boupère p. 287 289
- 11. Saint Vincent-sur-Graon p. 290 299

- Le Fenouiller p. 300 304
- <u>Les Brouzils</u> p. 305 317 13.
- Les Clouzeaux p. 318 322 14.
- 15. Les Lucs-sur-Boulogne p. 323 - 326
- 16. Montaigu p. 327 - 332
- 17. Mortagne-sur-Sèvre p. 333 - 335
- Moutiers-les-Mauxfaits p. 336 348 18.
- 19. Palluau p. 348 - 350
- Paulx p. 351 359 20.
- 21. Rocheservière p. 360 - 363
- Sainte-Hermine p.364 367

Association Vendéenne de Géologie

Inventaire des minéraux vendéens

1. Mervent

1. Mervent

Pages	N°	Minéraux			
8	1	Amiante	48	24a	Calcite et Quartz
9	2a	Barytine tabulaire et calcite	49	24b	Calcite et Quartz
10	2b	Barytine tabulaire et calcite	50	25a	Calcite et Quartz
11	3a	Barytine tabulaire et calcite	51	25b	Calcite et Quartz
12	3b	Barytine tabulaire et calcite	52	26	Calcite à scalénoèdres
13	4a	Barytine et Calcite	53	27	Calcite à scalénoèdres
14	4b	Barytine et Calcite	54	28a	Calcite à scalénoèdres composés et translucides
15	5	Barytine et Chalcopyrite	55	28b	Calcite à scalénoèdres composés et translucides
16	6	Barytine et pyrite	56	29a	Calcite cristaux biterminés
17	7a	Barytine couleur miel	57	29b	Calcite cristaux biterminés
18	7b	Barytine couleur miel	58	30	Calcite scalénoèdres accolés
19	8	Barytine grise	59	31	Calcite rosée en gerbe
20	9a	Calcite, Barytine et Chalcopyrite	60	32	Calcite rose en bouquets
21	9b	Calcite, Barytine et Chalcopyrite	61	33	Cacite - bouquets de cristaux en stalagmite
22	10	Calcite, barytine et chalcopyrite	62	34	Calcite jaune
23	11a	Calcite, barytine et chalcopyrite	63	35a	Calcite irisée
24	11b	Calcite, barytine et chalcopyrite	64	35b	calcite irisée - détail
25	12a	Calcite, Barytine et Pyrite	65	36	calcite irisée cristaux bipyramidés
26	12b	Calcite, Barytine et Pyrite	66	37a	Calcite - petits cristaux bipyramidés
27	13a	Calcite et Chalcopyrite	67	37b	Calcite - petits cristaux bipyramidés détail
28	13b	Calcite et Chalcopyrite	68	38	Calcite - formes arrondies
29	14a	Chalcopyrite et Calcite	69	39	Calcite grisâtre - rhomboèdres en escaliers
30	14b	Chalcopyrite et Calcite	70	40a	Calcite
31	15a	Chalcopyrite et Calcite	71	40b	Calcite - détail
32	15b	Chalcopyrite et Calcite	72	41	Calcite rosée
33	16	Chalcopyrite et Calcite	73	42	Calcite - machoire de calcite blanche
34		Calcite et Chalcopyrite	74	43a	Calcite
35	17b	Calcite et Chalcopyrite	75	43b	Calcite
36	18a	Calcite et Chalcopyrite	76	44	Pyrite
37	18b	Calcite et Chalcopyrite	77	45a	Pyrite
38	19a	Chalcopyrite et calcite	78	45b	Pyrite
39	19b	Chalcopyrite et calcite	79	46a	Pyrite et calcite
40		Calcite blanche et rose avec Chalcopyrite	80	46b	Pyrite et calcite
41	20b	• ,	81	47a	Calcite en gerbes et Barytine crêtée
42	21a	Pyrite et Calcite en bouquet	82	47b	Calcite en gerbes et Barytine crêtée - détail
43	21b	Pyrite et Calcite en bouquet	83	48a	Calcite en gerbes et Barytine crêtée
44		Calcite et pyrite	84	48b	Calcite en gerbes et Barytine crêtée - détail
45	22b	• •	85	49a	Calcite blanche et rose et Chalcopyrite
46	23a	Calcite et Pyrrhotite	86	49b	Calcite blanche et rose et Chalcopyrite
47	23b	Calcite et Pyrrhotite	87	49c	Calcite blanche et rose et Chalcopyrite - détail

Amiante

Echantillon (10 x 4 cm) - MERVENT - Collection Joseph GIRAUDEAU - Photographie J.Chauvet et D.Loizeau.

Barytine et Calcite

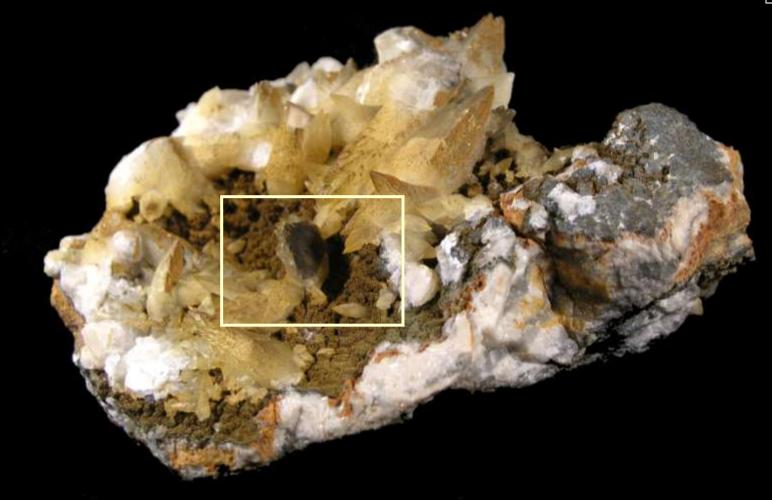
Barytine tabulaire rouge sur calcite pyritée. Échantillon (9 x 7 cm) - Bouquet de Barytine (15 mm) — Mervent - Collection A.DURET - Photo J.Chauvet, D.Loizeau

Barytine tabulaire rouge

Détail de 2a - Bouquet de Barytine (15 mm) - Photo J.Chauvet, D.Loizeau

Barytine et calcite

Barytine tabulaire brun orangé au milieu de cristaux de calcite . Echantillon (20 x 12 cm) - Mervent - Collection A. Duret - Photographie J.Chauvet et D.Loizeau.



Barytine tabulaire brun orangé au milieu de cristaux de calcite.

Barytine tabulaire fantôme, grise, au milieu de cristaux de calcite en scalénoèdres

Echantillon (12 x 10 cm) - Cristal de Baryte (17 x 11 mm) - Collection A. DURET - Photo J.Chauvet , D.Loizeau.

Barytine et calcite

Barytine tabulaire fantôme au milieu de cristaux de calcite en scalénoèdres Détail de 4a - Cristal de Baryte (17 x 11 mm) - Photo J.Chauvet , D.Loizeau.

Barytine et chalcopyrite

Barytine crêtée brune disposée en noyaux de pêche, avec chalcopyrite.

Plage de barytine (7 x 4 cm) – Mervent - Collection G.BERTET - Photo J.Chauvet , D.Loizeau.

Barytine et Pyrite

Barytine crêtée rose tendre avec quelques concentrations de minuscules cristaux de pyrite. Echantillon (7 x 4 cm) - Collection G.BERTET - Photo J.Chauvet , D.Loizeau.

Barytine couleur miel

Les cristaux de barytine sont d'habitus prismé de couleur miel (7 x 6 cm) MERVENT - Collection Joseph GIRAUDEAU - Photographie J.Chauvet et D.Loizeau.

Les cristaux de barytine sont d'habitus prismé de couleur miel. Détail de 7a - Photographie J.Chauvet et D.Loizeau.

Barytine grise

Barytine crêtée grise très brillante.- Géode (11 x 6 cm). Mervent - Collection Joseph Giraudeau - Photographie J.Chauvet et D.Loizeau.

Calcite - Barytine - Chalcopyrite

Les cristaux de calcite sont des scalénoèdres composites installés sur un lit de Barytine massive. (15 x 13 cm). Mervent - Collection Joseph Giraudeau - Photographie J.Chauvet et D.Loizeau.

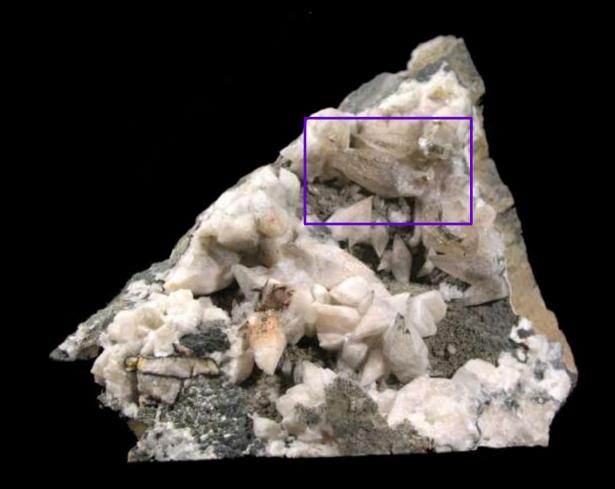
Détail de 9a - Les cristaux de calcite sont en scalénoèdres composites

Calcite - Barytine - Chalcopyrite

Gerbe de cristaux de calcite en forme de prismes à terminaison à trois pentes, posée sur la barytine crêtée rose pâle . Quelques petits cristaux de chalcopyrite - Échantillon (10 x 8 cm). Collection G.Bertet - Photo J.Chauvet , D.Loizeau.

Calcite - Barytine - Chalcopyrite

Les scalénoèdres de calcite rougeâtres en groupements de quelques individus recouvrent aux ¾ la barytine crêtée en noyau de pêche .La chalcopyrite est présente en petits cristaux. (25 x 15 cm) .Collection G.BERTET - Photo J.Chauvet , D.Loizeau.



Calcite - Barytine - Chalcopyrite

Détail de 11a - Scalénoèdres de calcite rougeâtres, barytine crêtée en noyau de pêche, chalcopyrite est présente en petits cristaux. - Photo J.Chauvet , D.Loizeau.

Calcite, Barytine et Pyrite

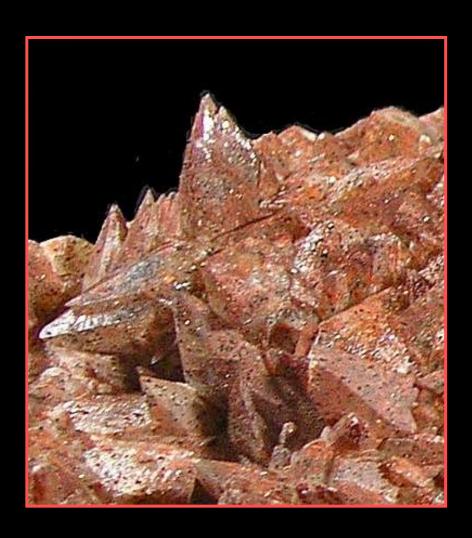
Calcite, Baryte

Détail de 12a - Petits cristaux de Baryte en queue d'aronde sur calcite. Photographie J.Chauvet et D.Loizeau

Calcite et Chalcopyrite

Bouquet de calcite sur chalcopyrite irisée. Géode (6 x 4 cm) Collection Joseph Giraudeau – Photographie J.Chauvet et D.Loizeau

Cristaux de calcite et chalcopyrite irisée.



Calcite et Chalcopyrite

La chalcopyrite est sur et entre les cristaux rouges de calcite. Echantillon (20 x 15 cm). Mervent - Collection Joseph Giraudeau - Photographie J.Chauvet et D.Loizeau.

Calcite et Chalcopyrite

Détail de 14a - La chalcopyrite est sur et entre les cristaux rouges de calcite. Photographie J.Chauvet et D.Loizeau

Chalcopyrite - Calcite

Cristaux de chalcopyrite sur lit de calcite dormant des bouquets. (Échantillon :15 x 8 cm - Bouquet de calcite (18 mm) Mervent - Collection Joseph GIRAUDEAU - Photographie J.Chauvet et D.Loizeau.

Calcite et Chalcopyrite

Détail de 15a - Photographie J.Chauvet et D.Loizeau

Chalcopyrite et Calcite

Chalcopyrite irisée sur lit de calcite.(4 x 3 cm) Mervent - Collection Joseph Giraudeau - Photographie J.Chauvet Et D.Loizeau.

Calcite et Chalcopyrite

Calcite rouge avec croix à 3 branches à la tête du cristal, sur lit de Chalcopyrite. Échantillon (15 x 12 cm - Cristal en croix (16 mm) - Collection A.DURET - Photo J.Chauvet, D.Loizeau

Calcite et Chalcopyrite

Détail de 17a - Calcite rouge avec croix à 3 branches (16 mm), sur lit de Chalcopyrite. Photo J.Chauvet, D.Loizeau

Calcite et Chalcopyrite

La chalcopyrite est installée sur un lit de calcite rouge. Du tout émerge des Scalénoèdres gris de calcite. Echantillon (35 x 20 cm) - Collection Joseph GIRAUDEAU — Photographie J.Chauvet et D.Loizeau

Chalcopyrite - Calcite

Détail de 18a - La chalcopyrite est installée sur un lit de calcite rouge. Du tout émerge des scalénoèdres gris de calcite. Photographie J.Chauvet et D.Loizeau

Chalcopyrite - Calcite

Chalcopyrite sur calcite en rhomboèdres plats. Echantillon (2,5 x 1, 5 cm) - Mervent - Collection Joseph Giraudeau - Photographie J.Chauvet et D.Loizeau.

Chalcopyrite - Calcite

Détail de 19a - Chalcopyrite sur calcite en rhomboèdres plats. Photographie J.Chauvet et D.Loizeau.

Calcite blanche et rose avec chalcopyrite

Echantillon (18 x 14 cm) – Mervent – Collection J.Giraudeau - Photo J.Chauvet, D.Loizeau

Calcite blanche et rose et chalcopyrite

Pyrite et Calcite

Bouquets de cristaux de calcite (8 mm) - Mervent - Collection A.DURET - Photo J.Chauvet , D.Loizeau

Petit bouquet de cristaux de Calcite avec cristal de Pyrite

Détail de 20a - Bouquets de cristaux de calcite (8 mm) - Photo J.Chauvet , D.Loizeau.

Calcite et Pyrite

Bouquet de calcite sur lit de cristaux de pyrite – Echantillon (11 x 9 cm) Mervent - Collection A.Duret - Photographie J.Chauvet et D.Loizeau.



Calcite – Pyrite

Détail de 22a - Bouquet de calcite sur lit de cristaux de pyrite . Photographie J.Chauvet et D.Loizeau

Calcite et marcassite

Cristaux de marcassite sur des scalénoèdres de calcite présentant 3 faces sommitales (16 x 11cm) Mervent - Collection Joseph Giraudeau — Photographie J.Chauvet et D.Loizeau

Détail de 23a - Cristaux de marcassite sur des scalénoèdres de calcite présentant 3 faces sommitales .

Photographie J.Chauvet et D.Loizeau

Calcite et Quartz

Cristaux de calcite en scalénoèdres accolés, mouchetés de points de pyrite oxydée. Les cristaux de quartz en groupements mamelonnés sont bourrés d'inclusions noires. Certains cristaux biterminés de quartz (3 à 4 mm) sont installés sur la calcite. Echantillon (16 x 5 cm) – Mervent - Collection G.BERTET - Photo J.Chauvet , D.Loizeau.

Détail de 24a - Un " fagot " de quartz juché sur un mamelon de calcite

Quartz et Calcite

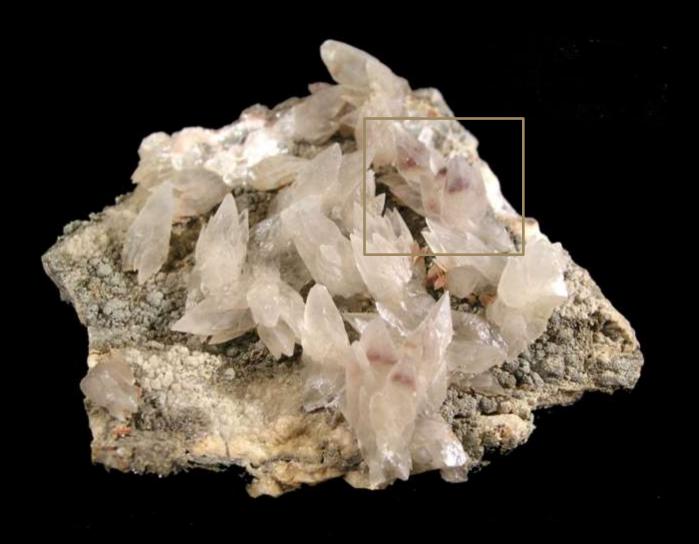
Cristaux de quartz prismés translucides entre la calcite.(9 x 5 cm) MERVENT - Collection Joseph GIRAUDEAU - Photographie J.Chauvet et D.Loizeau.

Cristaux de quartz prismés et translucides entre la calcite.(9 x 5 cm)

Détail de 25a - Photographie J.Chauvet et D.Loizeau

Calcite en scalénoèdres

Cristaux gris clair opaque à la base et noirâtres au sommet (13 x 8 cm) Collection G.BERTET - Photo J.Chauvet , D.Loizeau.



Calcite en Scalénoèdres

Cristaux jaunâtres à la base et noirâtres au sommet. Leur base est noyée dans une fine cristallisation. Echantillon (18 X 13 cm) . Collection G.Bertet - Photo J.Chauvet , D.Loizeau.

Calcite en scalénoèdres

Calcite en scalénoèdres composés et translucides. (10 x 8 cm)
MERVENT - Collection Joseph GIRAUDEAU — Photographie J.Chauvet et D.Loizeau

Calcite en scalénoèdres composés et translucides.

Calcite

Calcite

Détail de 29a - Cristaux de calcite bidéterminés bien en évidence sur fond gris-vert.
Photographie J.Chauvet et D.Loizeau.

Calcite

Calcite rose en gerbe

Calcite rose en bouquets

Bouquets de cristaux de calcite aux sommets arrondis.(14 x 8 cm) MERVENT - Collection Joseph Giraudeau - Photographie J.Chauvet et D.Loizeau

Calcite

Bouquets de cristaux disposés en stalagmite.(Hauteur du bouquet : 5 cm) . Mervent - Collection Joseph Giraudeau — Photographie J.Chauvet et D.Loizeau

Calcite jaune

Longs scalénoèdres - Échantillon (15 x 7 cm) - Mervent - Collection A. Duret - Photographie J.Chauvet et D.Loizeau.

Calcite irisée

Cet échantillon est intéressant pour l'irisation des cristaux de calcite.(11 x 15 cm) MERVENT - Collection Joseph GIRAUDEAU - - Photographie J.Chauvet et D.Loizeau.

Cristaux de calcite irisés

Détail de 35a - Photographie J.Chauvet et D.Loizeau.

Calcite irisée

Cristaux irisés et bipyramidés.(9 x 6 cm) MERVENT - Collection Joseph GIRAUDEAU — Photographie J.Chauvet et D.Loizeau.

Calcite - cristaux bipyramidés

Petits cristaux de calcite bipyramidés - Echantillon (22 x 18 cm) MERVENT - Collection A. DURET - Photographie J.Chauvet et D.Loizeau.

Calcite

Détail de 37a - Petits cristaux de calcite bipyramidés. Photographie J.Chauvet et D.Loizeau

Calcite

Echantillon (20 x 17 cm) - MERVENT - Collection A. DURET - Photographie J.Chauvet et D.Loizeau.

Calcite grisâtre

Calcite en rhomboèdres aigus disposés en escalier. (15 x 12 cm) MERVENT - Collection Joseph GIRAUDEAU - Photographie J.Chauvet et D.Loizeau.

Calcite

Petits cristaux de calcite blanche sur cristaux de calcite arrondis et roses (échantillon 18 x 14 cm) MERVENT - Collection A. DURET - Photographie J.Chauvet et D.Loizeau.

Calcite

Détail de 40a - Petits cristaux de calcite blanche sur cristaux de calcite arrondis et roses. Photographie J.Chauvet et D.Loizeau.

Calcite rosée

Scalénoèdres en groupes de quelques individus, d'orientation variée. Echantillon (9 x 6 cm) - Mervent - Collection G.BERTET - Photo J.Chauvet , D.Loizeau.

Calcite

Calcite

Cristaux de calcite en scalénoèdres sur fond un peu rosé. (échantillon : 27 x 20 cm) MERVENT - Collection A. DURET - Photographie J.Chauvet et D.Loizeau.

Détail de 43a - Cristaux de calcite en scalénoèdres sur fond un peu rosé. Photographie J.Chauvet et D.Loizeau.

Pyrite

Cristal de Pyrite en dodécaèdre (25 mm). Mervent - Collection Joseph Giraudeau - Photographie J.Chauvet et D.Loizeau.

Pyrite

Pyrite

Détail de 45a - Photo J.Chauvet, D.Loizeau

Pyrite - Calcite

Minuscules cristaux de pyrite sur calcite en cristaux couchés. (24 x 22 cm) MERVENT - Collection Joseph GIRAUDEAU – Photographie J.Chauvet et D.Loizeau

Calcite - Pyrite

Détail de 46a - Minuscules cristaux de pyrite sur calcite en cristaux couchés.

Photographie J.Chauvet et D.Loizeau

Calcite en gerbes sur barytine crêtée

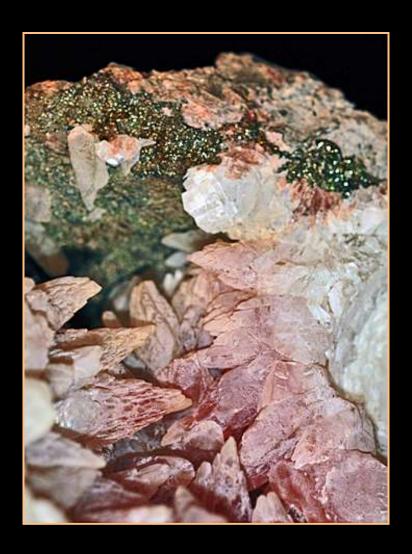
Calcite en gerbe sur barytine crêtée

Calcite en gerbe sur barytine crêtée

Calcite sur barytine crêtée avec cristaux de Chalcopyrite

Détail de 48a - Photo J.Chauvet, D.Loizeau

Calcite blanche et rose avec chalcopyrite



Calcite blanche et rose avec chalcopyrite

Calcite blanche et rose avec chalcopyrite

Détail de 49a - Photo J.Chauvet, D.Loizeau

Association Vendéenne de Géologie

Inventaire des minéraux vendéens

2. Littoral vendéen

2. Littoral vendéen

Pages		Minéraux						
90	1a	Calcite (pseudo morphose) en Quartz	128	23a	Barytine couleur miel en baguettes, sur quartz	166	42b	Quartz (hérisson) à inclusions de Pyrite
91	1b	Calcite (pseudo morphose) en Quartz	129	23b	Barytine couleur miel en baguettes, sur quartz	167	43	Quartz dans coquille de Pyrite
92	2	Quartz double génération	130	23c	Barytine couleur miel en baguettes, sur quartz	168	44	Géode de Quartz citrine
93	3a	Cristal de roche (géode) à 2 générations	131	24a	Barytine sur Quartz	169	45	Quartz citrine et Quartz blanc
94	3b	Cristal de roche (géode) à 2 générations	132	24b	Barytine sur Quartz	170	46a	Quartz incolore et citrin
95	4a	Quartz perlé avec cristaux bipyramidés	133	25	Barytine crêtée	171	46b	Quartz incolore et citrin
96	4b	Quartz perlé avec cristaux bipyramidés	134	26a	Barytine crêtée , en noyaux de pêche	172	47a	Quartz incolore et citrin
97	5a	Quartz citrine et cristal de roche	135	26b	Barytine crêtée , en noyaux de pêche	173	47b	Quartz incolore et citrin
98	5b	Quartz citrine et cristal de roche	136	27a	Cérusite maclée sur Quartz	174	48a	Quartz blanc et Quartz citrin
99	5c	Quartz citrine et cristal de roche	137	27b	Cérusite maclée sur Quartz	175	48b	Quartz blanc et Quartz citrin
100	6a	Quartz bipyramidé	138	28a	Disthène	176	49a	Apatite
101	6b	Quartz bipyramidé	139	28b	Disthène	177	49b	Apatite
102	7	Apatite tabulaire sur Muscovite et Tourmaline	140	29a	Disthène	178	50	Biotite
103	8	Barytine crêtée, en mamelons	141	29b	Disthène	179	51a	Muscovite
104	9a	Quartz et Calcédoine bleue	142	30a	Barytine et pyrite sur fluorine	180	51b	Muscovite
105	9b	Quartz et Calcédoine bleue	143	30b	Barytine et pyrite sur fluorine	181	52	Muscovite
106	10a	Quartz brun et chatoyant	144	30c	Barytine et pyrite sur fluorine	182	53a	Ammonite pyriteuse dans Calcite
107	10b	Quartz brun et chatoyant	145	31a	Fluorine et Barytine crêtée	183	53b	Ammonite pyriteuse dans Calcite
108	11	Quartz blanc en mâchoire	146	31b	Fluorine et Barytine crêtée	184	54a	Ammonite pyriteuse dans Calcite
109	12	Quartz blanc en cloisons	147	32a	Fluorine et Barytine crêtée	185	54b	Ammonite pyriteuse dans Calcite
110	13a	Quartz blanc et quartz gris	148	32b	Fluorine et Barytine crêtée - détail	186	55a	Calcite en cube (pseudomorphose)
111	13b	Quartz blanc et quartz gris	149	33a	Quartz sur fluorine et barytine	187	55b	Calcite en cube (pseudomorphose)
112	14a	Quartz rosé	150	33b	Quartz sur fluorine et barytine	188	56	Calcite en rose (pseudo morphose)
113	14b	Quartz rosé	151	34a	Pyrite oxydée sur Quartz	189	57a	Tourmaline noire sur Quartz
114	15a	Quartz gris	152	34b	Pyrite oxydée sur Quartz	190	57b	Tourmaline noire sur Quartz
115	15b	Quartz gris	153	35a	Quartz avec pm de Baryte et traces d'Hématite	191	58	Tourmaline dans Quartz
116	16	Quartz gris	154	35b	Quartz avec pm de Baryte et traces d'Hématite	192	59a	Galène sur Quartz
117	17a	Tourmaline brune et mica	155	36a	Quartz et pseudomorphose de Barytine en Quartz	193	59b	Galène sur Quartz
118	17b	Tourmaline brune et mica	156	36b	Quartz et pseudomorphose de Barytine en Quartz	194	60a	Quartz gris et Barytine crêtée
119	18a	Tourmaline brune dans du mica	157	37	Quartz et Barytine en pseudomorphose	195	60b	Quartz gris et Barytine crêtée
120	18b	Tourmaline brune dans du mica	158	38a	Quartz bidéterminé sur barytine crêtée			4
121	18c	Tourmaline brune dans du mica	159	38b	Quartz bidéterminé sur barytine crêtée			
122	19a	Tourmaline brune sur Quartz	160	39a	Quartz bidéterminé sur barytine crêtée			
123	19b	Tourmaline brune sur Quartz	161	39b	Quartz bidéterminé sur barytine crêtée			
124	20a	Cordiérite	162	39c	Quartz bidéterminé sur barytine crêtée			
125	20b	Cordiérite	163	40	Quartz fumé et Manganèse			
126	21	Staurotide et Fuschite	164	41	Quartz et traces d'hématite dans coquille de pyrite			
127	22	Pyrite oxydée sur barytine mamelonnée	165	42a	Quartz (hérisson) à inclusions de Pyrite			

Pseudomorphose de calcite en quartz

Pseudomorphose de calcite en quartz

Détail de 1a - Photo J.Chauvet, D.Loizeau

Quartz double génération

Quartz - Géode de cristal de roche avec 2 générations de cristaux

Quartz - Cristal de roche avec 2 générations de cristaux

Détail de 3a - Photo J.Chauvet, D.Loizeau

Quartz perle avec cristaux bipyramidés

Quartz perle avec cristaux bipyramidés

Détail de 4a - Photo J.Chauvet, D.Loizeau

Quartz citrine et cristal de roche

Quartz citrine et cristal de roche

Détail de 5a - Photo J.Chauvet, D.Loizeau

Quartz citrine et cristal de roche


Détail de 5b - Photo J.Chauvet, D.Loizeau

Quartz bipyramide

Quartz bipyramidé

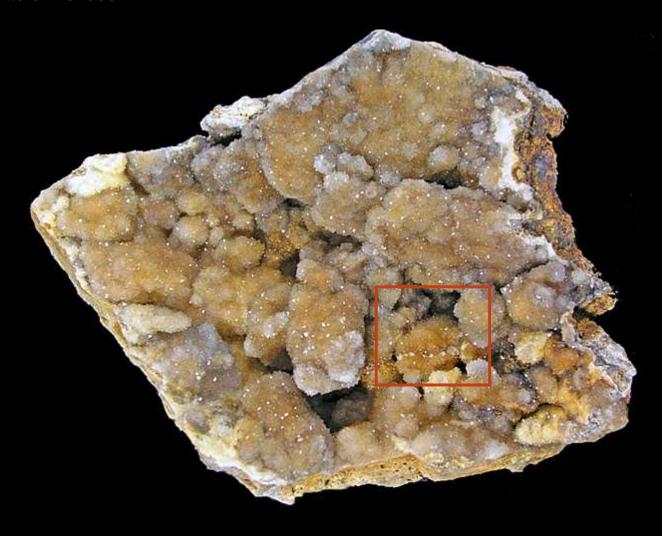
Détail de 6a - Photo J.Chauvet, D.Loizeau

Apatite tabulaire sur muscovite et tourmaline

Barytine crêtée, en mamelons

Echantillon (8 x 7 cm) - Anse de Cayola - Collection G.BERTET - Photographie J.Chauvet et D.Loizeau

Quartz et calcédoine bleutée cloisonnée



Quartz et calcédoine bleutée cloisonnée

Détail de 9a - Photo J.Chauvet, D.Loizeau

Quartz brun et chatoyant

Échantillon (12 X 9 cm) – Cayola - Collection J.Giraudeau - Photo J.Chauvet, D.Loizeau

Quartz brun et chatoyant

Quartz blanc en mâchoire

Echantillon (25 x 12 cm) - Anse de Cayola - Collection J.Giraudeau - Photographie J.Chauvet et D.Loizeau.

Quartz blanc en cloisons

Echantillon (10 x 7 cm) - Anse de Cayola - Collection G.Bertet - Photographie J.Chauvet et D.Loizeau

Quartz blanc et quartz gris

Echantillon (10 x 7 cm) - ANSE DE CAYOLA - Collection G.BERTET - Photographie J.Chauvet et D.Loizeau

Quartz blanc et quartz gris

Détail de 13a - Photographie J.Chauvet et D.Loizeau

Quartz rosé

Anse de Cayola - Collection G.Bertet - Photographie J.Chauvet et D.Loizeau

Quartz rosé

Quartz

Quartz

Détail de 14a - Photographie J.Chauvet et D.Loizeau.

Quartz blanc

Anse de Cayola - Collection J.Giraudeau - Photographie J.Chauvet et D.Loizeau

Tourmaline et mica

Echantillon (16 x 14 cm) – Cayola - collection A.Duret - Photographie J.Chauvet et D.Loizeau

Tourmaline et mica

Détail de 17a - Photographie J.Chauvet et D.Loizeau

Tourmaline brune ou Dravite dans du mica

Échantillon (16 X 14 cm) – Cayola – Collection A.Duret – Photo J.Chauvet, D.Loizeau

Tourmaline brune ou dravite dans du mica

Détail de 18a - Photo J.Chauvet, D.Loizeau

Tourmaline brune ou dravite dans du mica

Détail de 18b - Cristal de Tourmaline - Photo J.Chauvet, D.Loizeau

Tourmaline brune ou dravite sur du quartz

Cristal biterminé de 3 cm — Cayola - Collection J.Giraudeau - Photo J.Chauvet, D.Loizeau

Tourmaline brune ou dravite sur du quartz

Détail de 19a - Cristal biterminé de 3 cm - Photo J.Chauvet, D.Loizeau

Cordiérite

Echantillon (20 X 10 cm) – L'Île d'Yeu - Collection A.Duret - Photo J.Chauvet, D.Loizeau

Cordiérite Détail de 20a - Photo J.Chauvet, D.Loizeau

Staurotide et fuschite

Pyrite oxydée sur barytine mamelonnée

Barytine miel en baguettes sur quartz

Echantillon (8 x 7,5 cm) - Pointe du Payre – Jard/Mer – Collection J.Giraudeau - Photographie J.Chauvet et D.Loizeau

Barytine miel en baguettes sur quartz

Détail de 23a - Photographie J.Chauvet Et D.Loizeau

Barytine couleur miel sur quartz

Détail de 23b - Cristaux de barytine (3 x 5 mm) - Photo J.Chauvet, D.Loizeau

Barytine sur quartz

Echantillon (10 X 9 cm) - Pointe du Payré – Jard/mer - Collection A.Duret - Photo J.Chauvet, D.Loizeau

Barytine sur quartz

Détail de 24a - Photo J.Chauvet, D.Loizeau

Barytine crêtée

Barytine crêtée (13 x 10 cm) - JARD/MER - Collection G.BERTET - Photographie J.Chauvet et D.Loizeau.

Barytine crêtée

Barytine crêtée orangée disposée en noyaux de pêche.

Echantillon (13 X 10 cm) – Jard/mer - Collection G.BERTET - Photo J.Chauvet , D.Loizeau.

Barytine crêtée

Détail de 26 a - Photographie J.Chauvet Et D.Loizeau.

Cérusite maclée sur quartz

Cérusite maclée sur quartz

Détail de 27a - Cristal de cérusite maclée de 11 mm - Photo J.Chauvet, D.Loizeau

Disthène

Disthène

Disthène

Disthène

Détail de 29a - Cristal de 10cm - Photographie J.Chauvet et D.Loizeau

Barytine et pyrite sur fluorine

Barytine et pyrite sur fluorine

Détail de 30a - Photographie J.Chauvet et D.Loizeau.

Barytine et pyrite sur fluorine

Détail de 30b - Photographie J.Chauvet et D.Loizeau.

Barytine crêtée et fluorine

Barytine crêtée et fluorine

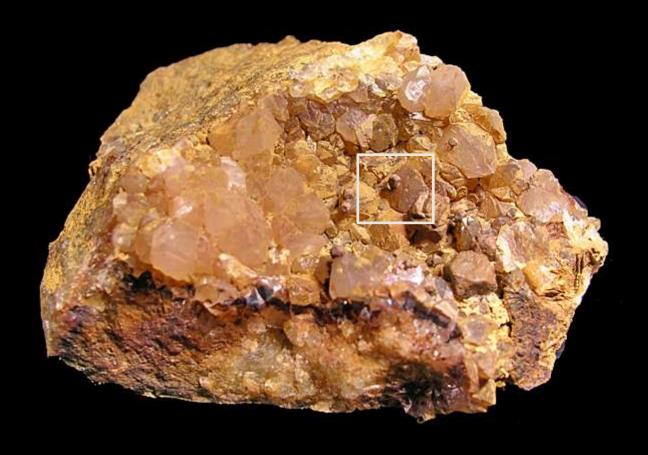
Détail 31a - Photographie J.Chauvet et D.Loizeau

Barytine crêtée et fluorine

Barytine crêtée et fluorine

Détail de 32a - Photographie J.Chauvet et D.Loizeau

Quartz sur fluorine et barytine



Quartz sur fluorine et barytine

Détail de 33a - Photographie J.Chauvet et D.Loizeau.

Quartz et pyrite oxydée

Pyrite oxydée sur quartz

Détail de 34a - Cristal De Pyrite de 2 mm - *Photographie J.Chauvet et D.Loizeau*

Quartz avec pseudomorphose de baryte et traces rouges d'hématite

Quartz avec pseudomorphose de baryte et traces rouges d'hématite

Détail de 35a - Photographie J.Chauvet et D.Loizeau

Quartz et pseudométamorphose de barytine en quartz

Quartz et pseudométamorphose de barytine en quartz

Quartz et pseudomorphose de barytine

Echantillon (12 x 5 cm) - Jard /Mer – La Mine - Collection A.Duret - Photographie J.Chauvet et D.Loizeau

Quartz biterminé sur barytine crêtée

Quartz bidéterminé sur barytine crêtée

Détail de 38a - Photographie J.Chauvet et D.Loizeau.

Quartz bidéterminé sur barytine crêtée

Echantillon (9 x 6 cm) - Pointe du Payré – Jard/mer - Collection Bertet- Photographie J.Chauvet et D.Loizeau.

Quartz bidéterminé sur barytine crêtée

Détail de 39a - Photographie J.Chauvet et D.Loizeau.

Quartz bidéterminé sur barytine crêtée

Détail de 39b - Photographie J.Chauvet et D.Loizeau.

Quartz fumé avec inclusion de manganèse

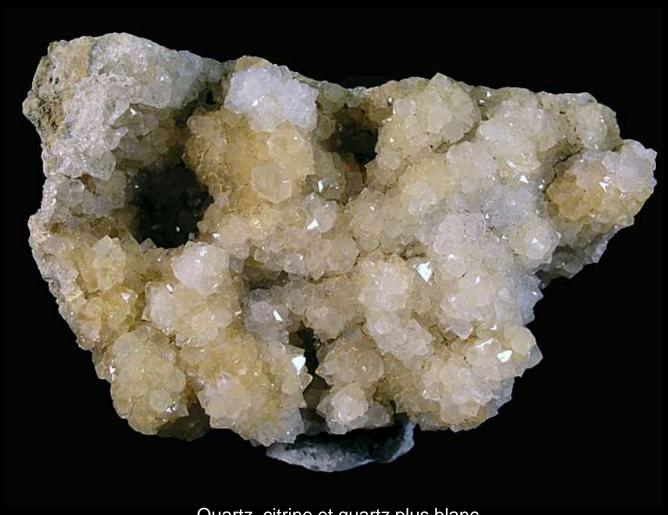
Quartz avec traces rouges d'hématite dans une coquille de pyrite

Quartz (hérisson) avec des inclusions de pyrite

Quartz avec des inclusions de pyrite

Détail de 42a - Photo J.Chauvet , D.Loizeau

Quartz dans une coquille de pyrite



Géode de quartz citrine

Quartz citrine et quartz plus blanc



Quartz incolore et quartz citrin

Quartz incolore et quartz citrin

Détails de 46a - Photo J.Chauvet, D.Loizeau

Quartz incolore et quartz citrin

Quartz incolore et quartz citrin

Détail de 47a - Photo J.Chauvet, D.Loizeau

Quartz citrin et quartz blanc

Quartz blanc et quartz citrine

Détail de 48a - Cristaux (0,1 x 0,3 cm) - *Photographie J.Chauvet et D.Loizeau*

Cristaux verts d'apatite

Echantillon ($5 \times 3 \text{ cm}$) - La Chaume - Collection G.Bertet - Photographie J.Chauvet et D.Loizeau

Cristal vert d'apatite

Détail de 49a - Photographie J.Chauvet et D.Loizeau

Cristal de biotite

Muscovite

Muscovite

Détail de 51a - Cristal de muscovite (3 x 2,5 cm) - Photographie J.Chauvet et D.Loizeau

Muscovite

Ammonite pyriteuse dans une rose de calcite

Pseudométamorphose de calcite par substitution du gypse (10x7 cm). Ammonite pyriteuse La Tranche-sur-mer - Collection G.Bertet - Photographie J.Chauvet et D.Loizeau.

Ammonite pyriteuse dans une rose de calcite

Détail de 53a - Photographie J.Chauvet et D.Loizeau.

Ammonite pyriteuse dans une rose de calcite

La Tranche-sur-mer - Collection J.Giraudeau - Photographie J.Chauvet et D.Loizeau.

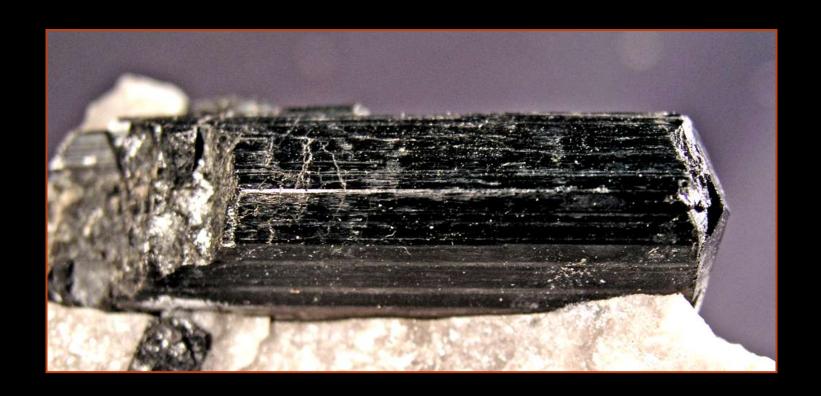
Ammonite pyriteuse dans une rose de calcite

Détail de 54a - Photographie J.Chauvet et D.Loizeau.

Pseudomorphose de halite en calcite

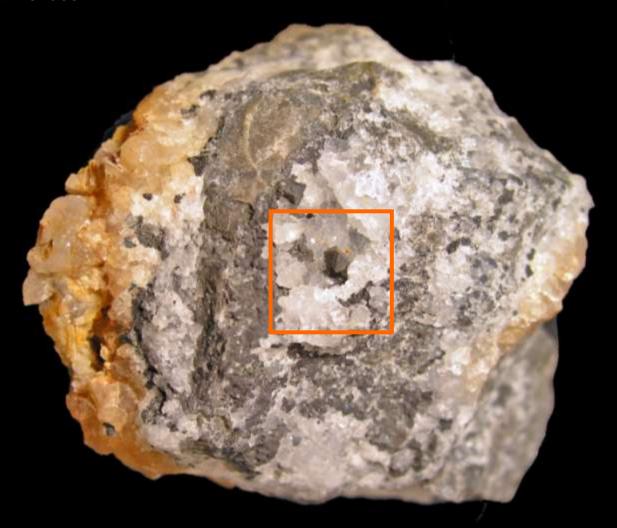
Pseudomorphose de halite en calcite

Pseudomorphose d'une rose de gypse en calcite



Tourmaline noire ou schörl sur du quartz

Tourmaline noire ou schörl sur du quartz


Détail de 57a - Cristal biterminé (5,5 cm) - Photo J.Chauvet, D.Loizeau

Cristal de tourmaline inclus dans du quartz

Cristal octaédrique de galène sur quartz

Cristal octaédrique de galène sur quartz

Détail de 59a - Cristal de galène (0,3 cm) - Photographie J.Chauvet et D.Loizeau

Quartz gris – emplacements de barytine crêtée

Echantillon (10x7 cm) - Talmont - Collection G.Bertet - Photographie J.Chauvet et D.Loizeau.

Quartz gris – emplacement de barytine crêtée

Détail 60a - Photographie J.Chauvet et D.Loizeau.

Association Vendéenne de Géologie

Inventaire des minéraux vendéens

3. Chambretaud

3. Chambretaud

Pages	N°	Minéraux
198	1a	Minéraux des Pegmatites : Quartz, Orthose et Mic
199	1b	Minéraux des Pegmatites : Quartz, Orthose et Mic
200	1c	Minéraux des Pegmatites : Quartz, Orthose et Mic
201	2a	Minéraux des Pegmatites : Quartz, Orthose et Mic
202	2b	Minéraux des Pegmatites : Quartz, Orthose et Mic
203	3	Quartz fumé sur Orthose et Phlogopite
204	4	Quartz fumé et Orthose
205	5	Quartz et Orthose
206	6	Quartz fumé avec Tourmaline et Orthose
207	7	Quartz fumé et Quartz laiteux sur Tourmaline
208	8	Tourmaline dans Quartz fumé
209	9	Orthose maclée
210	10	Aigue-marine béryl vert
211	11	Aigue-marine béryl bleu-vert
212	12	Béryl dans du quartz
213	13	Chrysobéryl
214	14	Quartz morion
215	15	Quartz fumé et Béryl vert
216	16	Quartz fumé habitus dauphinois
217	17	Quartz fumé tabulaire
218	18	Quartz fumé cathédrale
219	19	Quartz fumé sceptre
220	20	Quartz fumé cathédrale transparent
221	21	Quartz fumé marbre
222	22	Quartz fumé marbre
223	23	Quartz morion habitus tessinois
224	23	Quartz fumé en cathédrale
225	25	Quartz fumé bipyramides en cathédrale
226	26	Quartz morion bidéterminé
227	27	Quartz fumé recouvert de Quartz hématoïde
228	28	Quartz fumé recouvert de Quartz hématoïde
229	29	Quartz morion
230	30	Quartz avec une tête fumée
231	31	Quartz fumé cognac par transparence
232	32	Quartz morion
233	33	Quartz morion
234	34	Quartz fumé cognac translucide
235	35	Quartz fumés
236	36	Quartz rouges
237	37	Quartz fumé peigne
238	38	Quartz hyalin
239	39	Quartz et orthose

Pegmatite avec quartz , orthose et muscovite

Pegmatite avec quartz, orthose et muscovite

Pegmatite avec quartz, orthose et muscovite

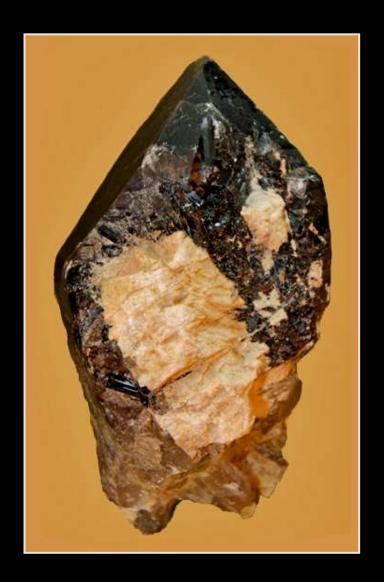
Détail de 1 - Chambretaud — Collection J.Giraudeau - Photo J.Chauvet, D.Loizeau

Pegmatite avec quartz, orthose et muscovite

Pegmatite avec quartz , orthose et muscovite

Détail de 2a- Photo J.Chauvet, D.Loizeau

Quartz fumé sur orthose et phlogopite


Quartz fumé et orthose

Quartz fumé et orthose

Quartz fumé – incrustations de tourmaline et d'orthose

Quartz fumé sur quartz fumé et orthose incrustés dans un cristal de tourmaline

Tourmaline dans quartz fumé

Cristaux d'orthose maclés

Aigue marine – béryl vert et translucide

Aigue marine – béryl bleu-vert et transparent

Béryl dans du quartz

Chrysobéryl

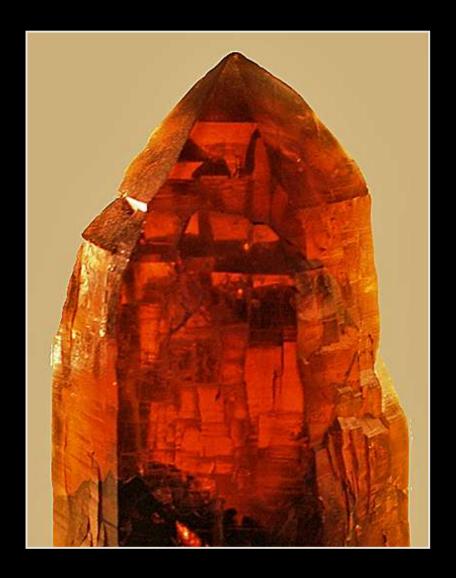
Quartz morion

Quartz fumé avec épigénisation de béryl vert

Quartz fumé, habitus dauphinois

Quartz fumé tabulaire

Quartz fumé cathédrale

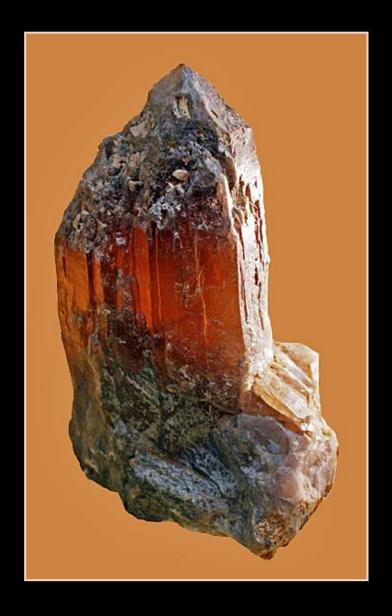


Quartz fumé sceptre

Quartz fumé cathédrale translucide

Quartz fumé marbré

Quartz fumé marbré



Quartz morion, habitus tessinois

Quartz fumé en cathédrale

Quartz fumés bipyramidés en cathédrale

Quartz morion bidéterminé, pyramide enfumée

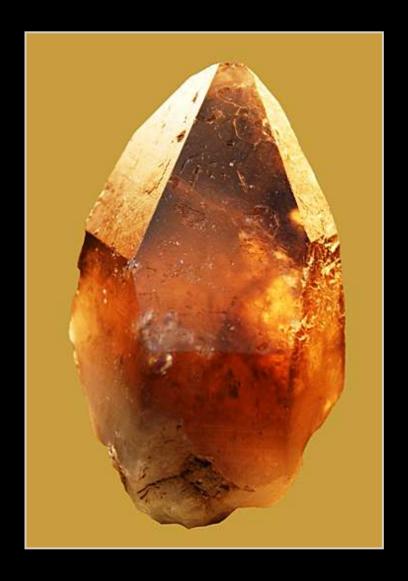
Quartz fumé recouvert de quartz hématoïde

Quartz cristal de roche avec tache hématoïde

Quartz morion

Quartz avec une tête fumée

Quartz fumé cognac translucide


Quartz morion

Quartz morion

Quartz fumé cognac translucide

Quartz fumés

Quartz rouges

Quartz fumé peigne

Quartz hyalin

Quartz et orthose

Association Vendéenne de Géologie

Inventaire des minéraux vendéens

4. Aizenay

4. Aizenay

Pages	N°	Minéraux
242	1a	Quartz fauve sur granite
243	1b	Quartz fauve sur granite
244	2	Quartz en différents cristaux
245	3	Quartz en différents cristaux

Quartz fauve sur granite

Bouquet de cristaux de quartz fauve

Quartz

Quartz

Association Vendéenne de Géologie

Inventaire des minéraux vendéens

5. Bazoges-en-Paillers et Bazoges-en-Pareds

5. Bazoges-en-Paillers et Bazoges-en-Pareds

Pages	N°	Minéraux
248	1	Quartz chloriteux
249	2a	Calcite
250	2b	Calcite

Quartz chloriteux

Calcite

Calcite Détail de 2a – Photo J.Chauvet, D.Loizeau

Association Vendéenne de Géologie

Inventaire des minéraux vendéens

6. Boufféré

6. Boufféré

Pages	N°	Minéraux
253	1	Quartz pyramidé sur formes mamelonnées
254	2a	Quartz pyramidé et Calcédoine
255	2b	Quartz pyramidé et Calcédoine
257	3	Quartz et calcédoine
258	4	Quartz bipyramidé après calcite
259	5	Quartz bipyramidé avec cubes de calcite disparus
260	6	Quartz avec pseudomorphose de calcite
261	7	Quartz
262	8a	Quartz
263	8b	Quartz
264	9a	Quartz prismé
265	9b	Quartz prismé
266	10	Pyrite dodécaédrique

Quartz pyramidés sous forme mamelonnée

Echantillon (17 x 9 cm) - Boufféré - Collection G.Bertet - Photo J.Chauvet, D.Loizeau

Quartz et calcédoine

Echantillon (15 x 12 cm) - Boufféré - Collection G.Bertet - Photo J.Chauvet, D.Loizeau

Quartz et calcédoine

Détail de 2a - Photo J.Chauvet, D.Loizeau

Quartz et calcédoine

Quartz pyramidés formés après la calcite

Echantillon (17 x 9 cm) - Boufféré - Collection G.Bertet - Photo J.Chauvet, D.Loizeau

Quartz pyramidés et emplacements de cristaux cubiques disparus

Echantillon (9 x 6 cm) - Boufféré - Collection G.Bertet - Photo J.Chauvet, D.Loizeau

Quartz avec pseudomorphose de calcite

Echantillon (14 x 7 cm) – Boufféré – Collection G.Mérand - Photo J.Chauvet, D.Loizeau

Quartz

Quartz

Echantillon (16 x 8 cm) – Boufféré – Collection G.Mérand - Photo J.Chauvet, D.Loizeau

Quartz

Détail de 8a – Photo J.Chauvet, D.Loizeau

Quartz prismé

Echantillon (9 x 8 cm) – Boufféré – Collection G.Bertet - Photo J.Chauvet, D.Loizeau

Quartz prismé

Détail de 9a- Photo J.Chauvet, D.Loizeau

Pyrite dodécaédrique

Echantillon (11 x 6 cm) - Boufféré - Collection G.Bertet - Photo J.Chauvet, D.Loizeau

Association Vendéenne de Géologie

Inventaire des minéraux vendéens

7. Challans

7. Challans

Pages	N°	Minéraux
268	1	Ambre avec inclusion de bois
269	2a	Aragonite sur grès
270	2b	Aragonite sur grès
271	3a	Aragonite en diadème
272	3b	Aragonite en diadème
273	4a	Aragonite brune
274	2b	Aragonite brune
275	5a	Aragonite en géode couleur miel
276	5b	Aragonite en géode couleur miel
277	6	Aragonite en nodule sur calcaire

Ambre avec inclusion de bois

Echantillon (11 X 7 cm) - Challans - Collection A.Duret - Photo J.Chauvet, D.Loizeau

Aragonite sur grès

Echantillon (10 X 10 cm) – Challans - Collection A.Duret - Photo J.Chauvet, D.Loizeau

Aragonite sur grès

Détail de 2a - Photo J.Chauvet, D.Loizeau

Aragonite en diadème

Echantillon (18 X 10 cm) – Challans - Collection J.Giraudeau - Photo J.Chauvet, D.Loizeau

Aragonite en diadème

Détail de 3a - Photo J.Chauvet, D.Loizeau

Aragonite brune avec des terminaisons couleur miel

Echantillon (20 X 16 cm) – Challans – Collection J.Giraudeau - Photo J.Chauvet, D.Loizeau

Aragonite brune avec des terminaisons couleur miel

Détail de 4a - Photo J.Chauvet, D.Loizeau

Géode d'aragonite de couleur miel

Echantillon (16 X 10 cm) – Challans – Collection A.Duret - Photo J.Chauvet, D.Loizeau

Géode d'aragonite de couleur miel

Détail de 5a - Photo J.Chauvet, D.Loizeau

Aragonite – nodule d'aragonite sur calcaire gréseux

Echantillon (7 x 5 cm) – Le Mollin – Collection J.Giraudeau - Photo J.Chauvet, D.Loizeau

Association Vendéenne de Géologie

Inventaire des minéraux vendéens

8. Chantonnay – Pont-Charron

8. Chantonnay - St Philbert du Pont-Charrault

Pages	N°	Minéraux
280	1	Calcite
281	2a	Calcite et Goethite
282	2b	Calcite et Goethite

Calcite

Echantillon (40 X 11 cm) – Pont-Charron – Collection A.Duret - Photo J.Chauvet, D.Loizeau

Calcite et goethite

Echantillon (20 X 10 cm) – Pont-Charron - Collection J.GIRAUDEAU - Photo J.Chauvet, D.Loizeau

Calcite et goethite

Détail de 2a - Photo J.Chauvet, D.Loizeau

Association Vendéenne de Géologie

Inventaire des minéraux vendéens

9. Le Bernard

9. Le Bernard

Pages	N°	Minéraux
284	1a	Fluorine
285	1b	Fluorine

Fluorine

Echantillon (7 X 4 cm) - Le Bernard - Collection J.Giraudeau - Photo J.Chauvet, D.Loizeau

Fluorine

Détail de 2a - Photo J.Chauvet, D.Loizeau

Association Vendéenne de Géologie

Inventaire des minéraux vendéens

10. Le Boupère

10. Le Boupère

Page N° Minéraux

289 1 Stibine en rosette

stibine en rosette

Echantillon (15 x 9 cm) – L. ramée – Le Boupère – Collection G.Bertet - Photo J.Chauvet, D.Loizeau

Association Vendéenne de Géologie

Inventaire des minéraux vendéens

11. St Vincent-sur-Graon

11. St Vincent-sur-Graon

Pages	N°	Minéraux
J		
292	1a	Marcasite sur Quartz
293	1b	Marcasite sur Quartz
294	2a	Marcassite et Sidérite sur Quartz
295	2b	Marcassite et Sidérite sur Quartz
296	3a	Marcassite mamelonnée
297	3b	Marcassite mamelonnée
298	4a	Calcite et pyrite
299	4b	Calcite et pyrite

Marcassite sur quartz

Echantillon (19 X 5,5 cm) - Le Danger - Collection J.Giraudeau - Photo J.Chauvet, D.Loizeau

Marcassite sur quartz

Détail de 1a - Photo J.Chauvet, D.Loizeau

Marcassite et sidérite sur quartz

Echantillon (7 X 5 cm) - Le Danger - Collection J.GIRAUDEAU - Photo J.Chauvet, D.Loizeau

Marcassite et sidérite sur quartz

détail de 2a - Photo J.Chauvet, D.Loizeau

Marcassite mamelonnée

Marcassite mamelonnée

Détail de 3a - Photo J.Chauvet, D.Loizeau

Calcite et pyrite

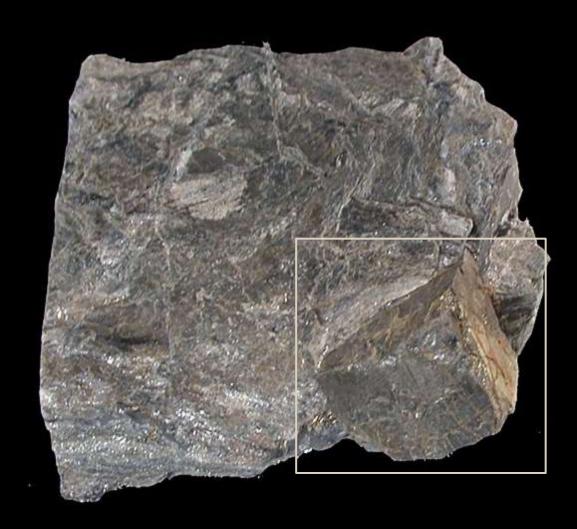
Echantillon ($4,5 \times 5$ cm) – Le Danger – Collection J.Giraudeau - Photo J.Chauvet, D.Loizeau

Calcite et pyrite

Association Vendéenne de Géologie

Inventaire des minéraux vendéens

12. Le Fenouiller


12. Le Fenouiller

Pages	N°	Minéraux
302	1a	Pyrite
303	1b	Pyrite
304	2	Pyrite cubique

Pyrite

Cristal de pyrite (1,8 X 1,9 cm) - Le Fenouiller - Collection J.Giraudeau - Photo J.Chauvet, D.Loizeau

Pyrite

Détail de 1a - Cristal de pyrite (1,8 X 1,9 cm)- Photo J.Chauvet, D.Loizeau

Pyrite cubique

 ${\it Echantillon (12 \times 6 \ cm) - Le \ Fenouiller - Collection \ G.Bertet - Photo J.Chauvet, D.Loizeau}$

Association Vendéenne de Géologie

Inventaire des minéraux vendéens

13. Les Brouzils

13. Les Brouzils

Pages	N°	Minéraux
307	1a	Stibine dans Quartz
308	1b	Stibine dans Quartz
309	2a	Stibine en gerbe
310	2b	Stibine en gerbe
311	3a	Stibine en lames
312	3b	Stibine en lames
313	4a	Stibine dans petite géode
314	4b	Stibine dans petite géode
315	5a	Stibine en lames libres
316	5b	Stibine en lames libres
317	6	Stibine en baguettes

Stibine dans du quartz

Echantillon (40 X184 cm) – Les Brouzils - Collection A.Duret - Photo J.Chauvet, D.Loizeau

Stibine dans du quartz

Détail de 1a - Photo J.Chauvet, D.Loizeau

Gerbe de stibine

Echantillon (16 X 12 cm) - Les Brouzils - Collection A.Duret - Photo J.Chauvet, D.Loizeau

Gerbe de stibine

Détail de 2a - Photo J.Chauvet, D.Loizeau

Stibine en lames après dissolution de la gangue

Stibine en lames après dissolution de la gangue

Détail de 3a - Photo J.Chauvet, D.Loizeau

Stibine – cristallisation dans une petite géode

Echantillon (8 x 4,5 cm) - Les Brouzils - Collection G.Mérand - Photo J.Chauvet, D.Loizeau

Stibine – cristallisation dans une petite géode

Détail de 4a - Photo J.Chauvet, D.Loizeau

Stibine cristallisée en lames libres

Echantillon (10 x 5 cm) - Les Brouzils - Collection G.Mérand - Photo J.Chauvet, D.Loizeau

Stibine cristallisée en lames libres

Détail de 5a - Photo J.Chauvet, D.Loizeau

Stibine cristallisée en baguettes

Détail - Les Brouzils — Collection G.Mérand - Photo J.Chauvet, D.Loizeau

Association Vendéenne de Géologie

Inventaire des minéraux vendéens

14. Les Clouzeaux

14. Les Clouzeaux

Pages	N°	Minéraux
320	1	Orthose
321	2	Quartz
322	3	Quartz fumé

Orthose

Echantillon (7 X 4 cm) – Les Clouzeaux - Collection J.Giraudeau - Photo J.Chauvet, D.Loizeau

Les Clouzeaux

Quartz

Echantillon (4,5 cm) – Les Clouzeaux - Collection J.Giraudeau - Photo J.Chauvet, D.Loizeau

Quartz fumé

Echantillon (7,5 X 4 cm) – Les Clouzeaux - Collection J.Giraudeau - Photo J.Chauvet, D.Loizeau

Association Vendéenne de Géologie

Inventaire des minéraux vendéens

15. Les Lucs-sur-Boulogne

15. Les Lucs-sur-Boulogne

Pages	N°	Minéraux
325	1a	Quartz blanc
326	1b	Quartz blanc

Echantillon (25 x 17 cm) - Les Lucs-sur-Boulogne - Collection G.Bertet - Photo J.Chauvet, D.Loizeau

Quartz blanc

Détail de 1a - Photo J.Chauvet, D.Loizeau

Association Vendéenne de Géologie

Inventaire des minéraux vendéens

16. Montaigu

16. Montaigu

Pages	N°	Minéraux	
329	1	Marcassite, Pyrite et Pyroxène	
330	2	Pyroxène	
331	3a	Quartz - ensemble de cristaux de quartz blanc	
332	3b	Quartz - détail de cristaux de quartz blanc	

Marcassite, pyrite et pyroxène

Echantillon (12 X 8 cm) – Montaigu - Collection A.DURET - Photo J.Chauvet, D.Loizeau

Pyroxène

Echantillon (9 X 4 cm) – Montaigu - Collection A.Duret - Photo J.Chauvet, D.Loizeau

Ensemble de cristaux de quartz blanc

Echantillon ($9 \times 8 \text{ cm}$) - Montaigu - Collection G.Mérand - Photo J.Chauvet, D.Loizeau

Ensemble de cristaux de quartz blanc

Détail de 3a - Photo J.Chauvet, D.Loizeau

Association Vendéenne de Géologie

Inventaire des minéraux vendéens

17. Mortagne-sur-Sèvre

17. Mortagne-sur-Sèvre

Page N° Minéral335 1 Oxydes de minerai d'Uranium ou Pechblende

Pechblende – Boxwerk de pechblende avec zones d'oxydation

Echantillon (40 X 18 cm) - Mortagne- Collection A.DURET - Photo J.Chauvet, D.Loizeau

Association Vendéenne de Géologie

Inventaire des minéraux vendéens

18. Moutiers-les-Mauxfaits

18. Moutiers-les-Mauxfaits

Pages	N°	Minéraux	
222			
338	1	Quartz biterminé avec terminaison composite	
339	2	Quartz flottant bidéterminé	
340	3	Quartz biterminés flottants	
341	4a	Quartz fantôme	
342	4b	Quartz fantôme	
343	5	Quartz fantôme	
344	6a	Quartz avec 2° génération de quartz et calcite	
345	6b	Quartz avec 2° génération de quartz et calcite	
346	7a	Quartz avec 2° génération de petits quartz bruns	
347	7b	Quartz avec 2° génération de petits quartz bruns	

Quartz flottant avec terminaison composite

Echantillon de 2,7 cm – Les Moutiers-les-Mauxfaits - Collection J.Giraudeau - Photo J.Chauvet, D.Loizeau

Quartz flottant biterminé

Echantillon (3 x 2,5 cm) – Le Pont-Rouge – Collection J.Giraudeau - Photo J.Chauvet, D.Loizeau

Quartz biterminés flottants

Echantillon (4 X 3 cm) – Moutiers-les-Mauxfaits - Collection J.Giraudeau - Photo J.Chauvet, D.Loizeau

Quartz fantôme

Quartz fantôme

Détail de 4a - Photo J.Chauvet, D.Loizeau

Quartz fantôme

Echantillon (3,5 x 3 cm) – Le Pont-Rouge – Collection J.Giraudeau - Photo J.Chauvet, D.Loizeau

Quartz et calcite – deux générations de quartz et pseudomorphose de calcite

Echantillon (11 X 10 cm) – Moutiers-les-Mauxfaits - Collection J.Giraudeau - Photo J.Chauvet, D.Loizeau

Quartz et calcite – deux générations de quartz et pseudomorphose de calcite

Détails de 6a - Photo J.Chauvet, D.Loizeau

Quartz avec une deuxième génération de petits quartz bruns

Echantillon (12 X 7 cm) — Moutiers-les-Mauxfaits - Collection J.Giraudeau - Photo J.Chauvet, D.Loizeau

Quartz avec une deuxième génération de petits quartz bruns

Détail de 7a - Photo J.Chauvet, D.Loizeau

Association Vendéenne de Géologie

Inventaire des minéraux vendéens

19. Palluau

19. Palluau

Page N° Minéral

350 1 Quartz

Quartz

Echantillon (15 cm) – Palluau – Collection André Boutin - Photo J.Chauvet, D.Loizeau

Association Vendéenne de Géologie

Inventaire des minéraux vendéens

20. Paulx

20. Paulx

Page	N°	Minéraux
353	1	Amiante
354	2a	Magnétite
355	2b	Magnétite
356	3a	Magnétite
357	3b	Magnétite
358	4a	Magnétite
359	4b	Magnétite

Amiante

Echantillon (20 x 6 cm) - Paulx - Collection G.Bertet - Photo J.Chauvet, D.Loizeau

Magnétite – deux cristaux en pyramide

Paulx – Collection G.Mérand - Photo J.Chauvet, D.Loizeau

Magnétite – cristal en pyramide

Détail de 2a - Cristal de magnétite (arête : 1 cm) - Photo J.Chauvet, D.Loizeau

Cristal de magnétite

Cristal de magnétite (arête : 1 cm) - Paulx — Collection G.Mérand - Photo J.Chauvet, D.Loizeau

Cristal de magnétite

Détail de 3a - Cristal de magnétite (arête : 1 cm) - Photo J.Chauvet, D.Loizeau

Magnétite

Echantillon ($7 \times 4.5 \text{ cm}$) – Paulx – Collection G.Mérand - Photo J.Chauvet, D.Loizeau

Magnétite

Détail de 4a - Cristal de magnétite - Photo J.Chauvet, D.Loizeau

Association Vendéenne de Géologie

Inventaire des minéraux vendéens

21. Rocheservière

21. Rocheservière

Page	N°	Minéraux
362	1a	Epidotite - Epidote
363	1b	Epidote - détail

Epidotite : roche riche en cristaux d'épidote

Echantillon (7 x 5 cm) - Rocheservière - Collection J.Giraudeau - Photo J.Chauvet, D.Loizeau

Cristaux d'épidote

Détail de 1a - Photo J.Chauvet, D.Loizeau

Association Vendéenne de Géologie

Inventaire des minéraux vendéens

22. Sainte-Hermine

22. Sainte-Hermine

Page	N°	Minéraux
366	1a	Marcassite
367	1b	Marcassite

Marcassite

Echantillon (6,5 X 5 cm) – Sainte Hermine - Collection J.Giraudeau - Photo J.Chauvet, D.Loizeau

Marcassite

Détail de 1a - Photo J.Chauvet, D.Loizeau

<u>A-B-C</u> <u>D-E-F</u> <u>G-M-O-P-Q</u> <u>S-T</u>

Page	Site	Minéraux			
			133	2	Barytine crêtée
			134	2	Barytine crêtée, en noyaux de pêche
268	7	Ambre avec inclusion de bois	135	2	Barytine crêtée, en noyaux de pêche
8	1	<u>Amiante</u>	210	3	<u>Béryl</u> vert - Aigue-marine
353	20	<u>Amiante</u>	211	3	<u>Béryl</u> bleu-vert – Aigue marine
95	2	Apatite tabulaire sur Muscovite et Tourmaline	212	3	<u>Béryl</u> dans du quartz
176	2	<u>Apatite</u>	178	2	<u>Biotite</u>
177	2	<u>Apatite</u>			
277	7	Aragonite en nodule sur calcaire	104	2	<u>Calcédoine</u> bleue
269	7	Aragonite sur grès	105	2	<u>Calcédoine</u> bleue
270	7	Aragonite sur grès	22	1	Calcite, barytine et chalcopyrite
274	7	Aragonite brune	23	1	Calcite, barytine et chalcopyrite
271	7	Aragonite en diadème	24	1	Calcite, barytine et chalcopyrite
272	7	Aragonite en diadème	25	1	Calcite, Barytine et Pyrite
273	7	Aragonite brune	26	1	Calcite, Barytine et Pyrite
275	7	Aragonite en géode couleur miel	20	1	Calcite, Barytine et Chalcopyrite
276	7	Aragonite en géode couleur miel	21	1	Calcite, Barytine et Chalcopyrite
			81	1	Calcite en gerbe sur Barytine crêtée
9	1	Barytine tabulaire et calcite	82	1	Calcite en gerbe sur Barytine crêtée
10	1	Barytine tabulaire et calcite	83	1	Calcite en gerbe sur Barytine crêtée
11	1	Barytine tabulaire et calcite	84	1	Calcite en gerbe sur Barytine crêtée
12	1	Barytine tabulaire et calcite	33	1	Calcite et Chalcopyrite
13	1	Barytine et Calcite	27	1	Calcite et Chalcopyrite
14	1	Barytine et Calcite	28	1	Calcite et Chalcopyrite
15	1	Barytine et Chalcopyrite	29	1	Calcite et Chalcopyrite
16	1	Barytine et pyrite	30	1	Calcite et Chalcopyrite
127	2	Barytine mamelonnée et Pyrite oxydée	31	1	Calcite et Chalcopyrite
128	2	Barytine couleur miel en baguettes, sur quartz	32	1	Calcite et Chalcopyrite
129	2	Barytine couleur miel en baguettes, sur quartz	34	1	Calcite et Chalcopyrite
130	2	Barytine couleur miel en baguettes, sur quartz	35	1	Calcite et Chalcopyrite
131	2	Barytine sur Quartz	36	1	Calcite et Chalcopyrite
132	2	Barytine sur Quartz	37	1	Calcite et Chalcopyrite
19	1	Barytine grise	38	1	Calcite et Chalcopyrite
17	1	Barytine couleur miel	39	1	Calcite et Chalcopyrite
18	1	Barytine couleur miel	40	1	Calcite et Chalcopyrite
103	2	Barytine crêtée, en mamelons	41	1	Calcite et Chalcopyrite

Pages		<u>A-B-C</u> <u>D-E-F</u> <u>G-N</u>	<u>1 – O – P – Q</u>	<u>S - T</u>	
85	1	Calcite blanche et rose avec Chalcopyrite	63	1	Calcite irisée
86	1	Calcite blanche et rose avec Chalcopyrite	64	1	Calcite irisée - détail
87	1	Calcite blanche et rose avec Chalcopyrite	66	1	<u>Calcite</u> - petits cristaux bipyramidés
281	8	Calcite et Goethite	67	1	<u>Calcite</u> - petits cristaux bipyramidés détail
282	8	Calcite et Goethite	70	1	Calcite
42	1	Calcite en bouquet et Pyrite	71	1	Calcite - détail
43	1	Calcite en bouquet et Pyrite	74	1	<u>Calcite</u>
44	1	Calcite et Pyrite	75	1	<u>Calcite</u>
45	1	<u>Calcite</u> et Pyrite	188	2	Calcite en rose (pseudomorphose)
182	2	Calcite et Ammonite pyriteuse	186	2	Calcite en cube (pseudomorphose)
183	2	Calcite et Ammonite pyriteuse	187	2	Calcite en cube (pseudomorphose)
184	2	Calcite et Ammonite pyriteuse	249	5	<u>Calcite</u>
185	2	Calcite et Ammonite pyriteuse	250	5	<u>Calcite</u>
46	1	Calcite et Marcassite	280	8	<u>Calcite</u>
47	1	Calcite et Marcassite	136	2	Cérusite maclée sur Quartz
48	1	Calcite et Quartz	137	2	Cérusite maclée sur Quartz
49	1	Calcite et Quartz	213	3	<u>Chrysobéryl</u>
50	1	Calcite et Quartz	124	2	<u>Cordiérite</u>
51	1	Calcite et Quartz	125	2	<u>Cordiérite</u>
90	2	Calcite (pseudomorphose) en Quartz			D
91	2	Calcite (pseudomorphose) en Quartz	138	2	<u>Disthène</u>
52	1	<u>Calcite</u> en scalénoèdres	139	2	<u>Disthène</u>
53	1	<u>Calcite</u> en scalénoèdres	140	2	<u>Disthène</u>
58	1	Calcite en scalénoèdres accolés	141	2	<u>Disthène</u>
59	1	<u>Calcite</u> rosée_en gerbe			
60	1	<u>Calcite</u> rose en bouquets	362	21	<u>Epidotite</u>
61	1	Calcite - bouquets de cristaux en stalagmite	363	21	<u>Epidote</u>
62	1	<u>Calcite</u> jaune			
65	1	Calcite irisée cristaux bipyramidés	142	2	Fluorine, Barytine et Pyrite
68	1	<u>Calcite</u> - formes arrondies	143	2	Fluorine, Barytine et Pyrite
69	1	Calcite grisâtre - rhomboèdres en escaliers	144	2	Fluorine, Barytine et Pyrite
72	1	<u>Calcite</u> rosée	145	2	Fluorine et Barytine crêtée
73	1	Calcite - mâchoire de calcite blanche	146	2	Fluorine et Barytine crêtée
54	1	Calcite à scalénoèdres composés et translucides	147	2	Fluorine et Barytine crêtée
55	1	Calcite à scalénoèdres composés et translucides	148	2	Fluorine et Barytine crêtée
56	1	<u>Calcite</u> cristaux biterminés	149	2	Fluorine, Barytine et Quartz
57	1	<u>Calcite</u> cristaux biterminés			

A-B-C D-E-F G-M-O-P-Q S-T

150	2	Fluorine Quartz sur et barytine	78	1	<u>Pyrite</u>
285	9a	<u>Fluorine</u>	265	6	Pyrite dodécaédrique
286	9b	<u>Fluorine</u>	304	12	Pyrite cubique
			302	12	<u>Pyrite</u>
192	2	<u>Galène</u> sur Quartz	303	12	<u>Pyrite</u>
193	2	<u>Galène</u> sur Quartz	330	16	<u>Pyroxène</u>
					Q
354	20	<u>Magnétite</u>	157	2	Quartz et Barytine en pseudomorphose
355	20	<u>Magnétite</u>	153	2	Quartz avec pseudomorphose de Barytine
356	20	<u>Magnétite</u>	154	2	Quartz avec pm de Baryte et traces d'Hématite
357	20	<u>Magnétite</u>	155	2	Quartz et pseudomorphose de Barytine en Quartz
358	20	<u>Magnétite</u>	156	2	Quartz et pseudomorphose de Barytine en Quartz
359	20	<u>Magnétite</u>	158	2	Quartz biterminé sur barytine crêtée
329	16	Marcassite, Pyrite et Pyroxène	159	2	Quartz biterminé sur barytine crêtée
292	11	Marcassite sur Quartz	160	2	Quartz biterminé sur barytine crêtée
293	11	Marcassite sur Quartz	161	2	Quartz biterminé sur barytine crêtée
294	11	Marcassite et Sidérite sur Quartz	162	2	Quartz biterminé sur barytine crêtée
295	11	Marcassite et Sidérite sur Quartz	194	2	Quartz gris et Barytine crêtée
296	11	Marcassite mamelonnée	195	2	Quartz gris et Barytine crêtée
297	11	Marcassite mamelonnée	215	3	Quartz fumé et Béryl vert
366	22	<u>Marcassite</u>	256	6	Quartz_et calcédoine
367	22	<u>Marcassite</u>	254	6	Quartz et Calcédoine
181	2	<u>Muscovite</u>	255	6	Quartz_et Calcédoine
179	2	<u>Muscovite</u>	257	6	Quartz bipyramidé après calcite
180	2	<u>Muscovite</u>	258	6	Quartz bipyramidé avec cubes de calcite disparus
		0	259	6	Quartz avec pseudomorphose de calcite
209	3	Orthose maclé	198	3	Minéraux des pegmatites : Quartz, Orthose et Mica
320	14	<u>Orthose</u>	203	3	Quartz fumé sur Orthose et Phlogopite
			204	3	Quartz fumé et Orthose
335	17	<u>Pechblende</u>	205	3	Quartz et Orthose
79	1	Pyrite et Calcite	199	3	Minéraux des Pegmatites: Quartz, Orthose et Mica
80	1	Pyrite et Calcite	200	3	Minéraux des Pegmatites: Quartz, Orthose et Mica
298	11	Pyrite et Calcite	201	3	Minéraux des Pegmatites : Quartz, Orthose et Mica
299	11	Pyrite et Calcite	202	3	Minéraux des Pegmatites : Quartz, Orthose et Mica
151	2	Pyrite oxydée sur Quartz	164	2	Quartz et traces d'hématite dans coquille de Pyrite
152	2	Pyrite oxydée sur Quartz	167	2	Quartz dans coquille de Pyrite
76	1	Pyrite	165	2	Quartz (hérisson) à inclusions de Pyrite
77	1	Pyrite Pyrite			

$\underline{\mathsf{A}}-\underline{\mathsf{B}}-\underline{\mathsf{C}} \ \underline{\mathsf{D}}-\underline{\mathsf{E}}-\underline{\mathsf{F}} \ \underline{\mathsf{G}}-\underline{\mathsf{M}}-\underline{\mathsf{O}}-\underline{\mathsf{P}}-\underline{\mathsf{Q}} \ \underline{\mathsf{S}}-\underline{\mathsf{T}}$

166	2	Quartz (hérisson) à inclusions de Pyrite	217	3	Quartz fumé tabulaire
206	3	Quartz fumé avec Tourmaline et Orthose	218	3	Quartz fumé cathédrale
207	3	Quartz fumé et Quartz laiteux sur Tourmaline	219	3	Quartz fumé sceptre
92	2	Quartz double génération	220	3	Quartz fumé cathédrale transparent
108	2	Quartz blanc en mâchoire	221	3	Quartz fumé marbre
109	2	Quartz blanc en cloisons	222	3	Quartz fumé marbre
116	2	Quartz blanc	223	3	Quartz morion habitus tessinois
163	2	Quartz fumé et Manganèse	224	3	Quartz fumé en cathédrale
168	2	Géode de Quartz citrine	225	3	Quartz fumé bipyramides en cathédrale
169	2	Quartz citrine et Quartz blanc	226	3	Quartz morion bidéterminé
106	2	Quartz brun et chatoyant	227	3	Quartz fumé recouvert de Quartz hématoïde
107	2	Quartz brun et chatoyant	228	3	Quartz fumé recouvert de Quartz hématoïde
110	2	Quartz blanc et quartz gris	229	3	Quartz morion
111	2	Quartz blanc et quartz gris	230	3	Quartz avec une tête fumée
112	2	Quartz rosé	231	3	Quartz fumé cognac par transparence
113	2	<u>Quartz</u> rosé	232	3	Quartz morion
114	2	Quartz gris	233	3	Quartz morion
115	2	Quartz gris	234	3	Quartz fumé cognac translucide
93	1	Quartz (géode) à 2 générations	235	3	Quartz fumés
94	1	Quartz (géode) à 2 générations	236	3	Quartz rouges
170	2	Quartz incolore et citrin	237	3	Quartz fumé peigne
171	2	Quartz incolore et citrin	238	3	Quartz hyalin
95	2	Quartz perlé avec cristaux bipyramidés	239	3	Quartz et Orthose
96	2	Quartz perlé avec cristaux bipyramidés	244	4	Quartz en différents cristaux
172	2	Quartz incolore et citrin	245	4	Quartz en différents cristaux
173	2	Quartz incolore et citrin	242	4	Quartz fauve sur granite
174	2	Quartz blanc et Quartz citrin	243	4	Quartz fauve sur granite
175	2	Quartz blanc et Quartz citrin	248	5	Quartz chloriteux
97	2	Quartz citrine et cristal de roche	253	6	Quartz bipyramidé sur formes mamelonnées
98	2	Quartz citrine et cristal de roche	260	6	<u>Quartz</u>
99	2	Quartz citrine et cristal de roche	261	6	<u>Quartz</u>
100	2	Quartz bipyramidé	262	6	<u>Quartz</u>
101	2	Quartz bipyramidé	263	6	<u>Quartz</u> prismé
214	3	<u>Quartz</u> morion	264	6	<u>Quartz</u> prismé
216	3	Quartz fumé habitus dauphinois	321	14	<u>Quartz</u>

A-B-C D-E-F G-M-O-P-Q S-T

322	14	Quartz fumé
325	15	Quartz blanc
326	15	Quartz blanc
331	16	Quartz - ensemble de cristaux de quartz blanc
332	16	Quartz - détail de cristaux de quartz blanc
338	18	Quartz bidéterminé avec terminaison composite
339	18	Quartz_flottant bidéterminé
340	18	Quartz bidéterminés flottants
343	18	Quartz fantôme
341	18	Quartz fantôme
342	18	Quartz fantôme
344	18	Quartz avec 2° génération de quartz et calcite
345	18	Quartz avec 2° génération de quartz et calcite
346	18	Quartz avec 2° génération de petits quartz bruns
347	18	Quartz avec 2° génération de petits quartz bruns
350	19	<u>Quartz</u>
126	2	Staurotide et Fuschite
307	13	Stibine dans Quartz
308	13	Stibine dans Quartz
289	10	Stibine en rosette
317	13	Stibine en baguettes
309	13	Stibine en gerbe
310	13	Stibine en gerbe
311	13	Stibine en lames
312	13	Stibine en lames
313	13	Stibine dans petite géode
314	13	Stibine dans petite géode
315	13	Stibine en lames libres
316	13	Stibine en lames libres

Tourmaline brune et mica
Tourmaline brune et mica
Tourmaline brune dans du mica
Tourmaline brune dans du mica
Tourmaline brune dans du mica
Tourmaline brune sur Quartz
Tourmaline brune sur Quartz
Tourmaline noire sur Quartz
Tourmaline noire sur Quartz
Tourmaline dans Quartz
<u>Tourmaline</u> dans Quartz fumé

Cadre géologique et origine des minéraux inventoriés

♦Lien Carte géologique

Généralités

Les roches et les minéraux contenus dans le sous-sol du département portent en eux la longue histoire de notre région. C'est aux chercheurs de déchiffrer les messages qu'ils nous délivrent et d'expliquer la diversité des paysages actuels.

Les minéraux se rencontrent normalement en associations appelées paragénèses. L'étude de ces associations fournit des informations importantes sur les conditions de leur formation et sur l'histoire géologique de notre région. Les roches rencontrées en Vendée représentent un intervalle de temps de plus de 600 millions d'années et ces différentes formations géologiques appartiennent à environ 30 étages géologiques.

Certains minéraux sont systématiquement ensemble sur de vastes surfaces, ils se rencontrent dans le même type de roches, ce sont les granites, schistes, gneiss... D'autres associations se situent dans des filons, des cavités, des incrustations. C'est le cas des pegmatites granitiques: des fluides se concentrent dans des cavités parfois de grande taille. A partir de la silice et d'éléments rares, des minéraux se forment, souvent de grandes dimensions. On trouve de tels filons de pegmatites sur le littoral vendéen: les Sables d'Olonne, l'île d'Yeu.

Dans les roches métamorphiques l'association des minéraux, la paragenèse, varie suivant les conditions de température, de pression et de la composition chimique de la roche initiale. Nous avons de beaux exemples en Vendée, les éclogites de Saint Philbert de Bouaine, les amphibolites, les gneiss. . .

L.Arrivé

1. Mervent - carrière de La Jolletière

Cette carrière est fermée depuis quelques années, elle est constituée d'une roche massive appelée *amphibolite*. C'est une roche à grain fin ou moyen, de teinte verte plus ou moins sombre. L'étude microscopique montre la présence d'amphibole calcique (actinote), de feldspath (albite), de chlorite, d'épidote de teinte verte, de grenat, de magnétite, et de pyrite ...Ces amphibolites sont d'anciens basaltes marins qui se sont modifiés sous l'action de la température et de la pression, on les nomme *métavolcanites*.

Bien que massive, cette roche présente des *filons* dans lesquels des amateurs ont pu récolter de magnifiques associations de *calcite, barytine, pyrite, chalcopyrite*. Cette collecte s'est étalée sur plusieurs dizaines d'années, La découverte d'associations de minéraux de qualité est assez rare, elle nécessite beaucoup d'observation, de dextérité et de patience..

Ces associations de minéraux sont nées de l'eau. Les eaux de pluie, les eaux des rivières, s'infiltrent et dissolvent les minéraux. Plus les eaux s'enfoncent, plus leur température et pouvoir solvant augmentent, elles sont en particulier saturées en baryum, fluor...Elles vont rencontrer des eaux chaudes venues des profondeurs. En s'écoulant le long des failles, des fissures, les minéraux vont se déposer le long des parois. Si ces parois sont suffisamment écartées, de beaux minéraux vont cristalliser. Ces formations de minéraux ont commencé depuis des millions d'années et les mécanismes d'érosion les ramènent à la surface, ainsi que la dynamite des carriers!

L.Arrivé

2. Littoral vendéen (1/2)

Le littoral vendéen s'étend sur 240 km depuis la Baie de Bourgneuf jusqu'à l'Anse de l'Aiguillon-sur--Mer. Ce territoire bordé par l'Océan comporte deux grands marais : le Marais Breton-Vendéen au Nord et le Marais Poitevin au Sud, protégés par des cordons dunaires de formation récente et des digues plusieurs fois reconstruites.

A Jard-sur-mer, on observe sur plusieurs kilomètres le contact entre deux grands domaines : le Massif armoricain au Nord et le Bassin aquitain au Sud. Depuis Jard-sur-mer jusqu'à la Tranche-sur-mer, les falaises du littoral sont formées de couches calcaires du Jurassique, à faible pendage et se prolongeant en mer pour former de vastes platiers rocheux. On retrouve des panneaux effondrés de calcaires du Jurassique inférieur (Lias), jusqu'à Olonne-sur-Mer (La Gachère).

A partir de *Sion-sur-l'océan* et jusqu'à Jard-sur-mer, on observe une coupe presque continue d'un petit morceau de la **Chaîne Hercynienne** divisé en 3 unités :

- La première unité est formée par les **micaschistes de St Gilles**, ils forment les falaises de la Corniche Vendéenne.
- La seconde unité est formée par la nappe des **Porphyroïdes**, formation volcano-sédimentaire, elle vient chevaucher la série métamorphique de Brétignolles-sur-mer au Rocher Sainte Véronique.
- La 3^{ème} unité est l'ensemble des **formations métamorphiques** allant de Brétignolles-sur-mer jusqu'au Sud des Sables d'Olonne. Les formations de Brétignolles-sur-mer sont faiblement métamorphiques tandis que la série métamorphique des Sables d'Olonne comprend un ensemble dont le métamorphisme est de plus en plus important du Nord vers le Sud, de Sauveterre à la Chaume et Cayola.

Littoral vendéen (2/2)

Cette zonation du métamorphisme est à l'origine d'une répartition des minéraux en fonction des gradients du métamorphisme (température, pression) et de la nature des roches soumises à ces facteurs. Des minéraux « index » apparaissent avec l'intensité du métamorphisme. Des cortèges de minéraux se sont ainsi formés dans les micaschistes : *grenat, staurotide, muscovite, biotite, chloritoïde, disthène, épidote, apatite*...

Dans les gneiss de la Chaume, du Puits d'Enfer, un granite d'anatexie a intrudé cet ensemble et des filons de pegmatite riches en minéraux de grande taille ont recoupé ces gneiss. Les minéraux les plus fréquents de ces pegmatites sont : quartz, feldspath, mica (surtout mica blanc), tourmaline, béryl...

Des minéralisations importantes se sont formées dans les séries calcaires. Elles résultent des précipitations de fer et des remontées hydrothermales. On observe ainsi des filons de pyrite, galène argentifère, blende, barytine. Certains de ces sulfures ont été exploités au cours des XVIII et XIXème siècles.

Au cours de périodes chaudes, la silice d'origine hydrothermale a épigénisé, remplacé lentement un minéral, par de la silice, entraînant la **silicification** des calcaires du Lias à la Pointe du Payré.

Le « Pain de St Jean d' Orbestier » constitué d'orthogneiss a été imprégné de filons de *quartz laiteux* de teintes très variées. Dans toutes ces formations siliceuses se sont formées de magnifiques filons et *géodes de cristaux de quartz* que des amateurs ont pu sauver de l'érosion marine. La récolte de ces échantillons a toujours nécessité beaucoup de patience et de dextérité.

L.Arrivé

3. Haut Bocage vendéen (1/2)

Minéraux récoltés dans le Haut Bocage vendéen en particulier dans le secteur de Chambretaud, Boufféré et les Brouzils.

Chambretaud est situé au centre du Massif granitique des Herbiers. Trois générations de granites se sont succédées :

- la première est représentée par le massif de Pouzauges,
- la deuxième par le granite du Châtillon, de Moulins , les Aubiers.
- la troisième génération, plus récente, comprend les granites de Mortagne, Chatelliers-Châteaumur.

Ces granites contiennent des **granites porphyroïdes** à cristaux de feldspath de plusieurs centimètres de long et des pegmatites formées de gros cristaux de feldspaths, quartz et micas.

Ces granites ont été soumis à **2 systèmes failles** principaux : le premier est orienté NW-SE et le second E-W et de nombreuses failles secondaires viennent se greffer sur les 2 systèmes principaux et accentue ce découpage régional.

Ces contraintes tectoniques ont fracturé ce massif granitique surtout sur les bords et des minéralisations variées ont rempli ces fissures.

Les principales **minéralisations** ont été les minerais d'uranium en particulier la pechblende, l'autunite exploités pendant 40 ans en Vendée. C'est aussi dans ces fissures que vont se déposer les filons d'antimoine exploités jusqu'en 1930. Certains **filons** se sont remplis de roches siliceuses en particulier des cristaux de quartz blanc et de quartz colorés

Le principal quartz est la « pierre de Chambretaud », c'est un quartz fumé appelé « diamant de Vendée ». Il a été récolté au XIXème et au XXème siècle en particulier, lors des importants travaux réalisés pour la construction de la voie ferrée. Ces «diamants » étaient l'objet d'un commerce pour les nombreux colporteurs qui sillonnaient la région. Ils les achetaient à bas prix aux paysans qui en trouvaient après les labours, pour les revendre à des joailliers nantais. La Muséum National d'Histoire Naturelle possède une améthyste et un beau quartz fumé de Chambretaud.

3. Haut Bocage vendéen (2/2)

Des officiers vendéens avaient fait monter un collier en quartz fumé qu'ils offrirent à la duchesse de Berry lors de son passage en Vendée en 1828. C'est avec cette parure qu'elle fit son entrée au bal donné en son honneur par la ville de Nantes, le 1^{er} juillet 1828. Sous la Restauration, la duchesse d'Angoulême, fille de Louis XVI, reçut une magnifique parure en quartz fumé. Sous la Restauration, l'abbé Brumauld de Beauregard, nommé évêque d'Orléans reçut un anneau épiscopal avec une « pierre de Chambretaud » de la plus belle eau.

Pour sa nomination comme évêque de Nagasaki en 1885, Monseigneur Cousin reçut de ses compatriotes vendéens une mître ornée de superbes pierres de Chambretaud.

La paroisse de Chambretaud possède un calice richement orné de quartz fumé que nous avons pu photographier (Diapositive suivante).

Autres minéraux récoltés dans le secteur de Chambretaud : des cristaux d'**orthose**, des cristallisés en tablettes hexagonales. **micas** blancs et des micas noirs

Cet inventaire présente aussi des minéraux récoltés dans la carrière de Montaigu-Boufféré et aux Brouzils : quartz, cristaux de calcite recouverts de quartz, stibine, pyrite...

L.Arrivé

La pierre de Chambretaud ou « diamant de Vendée » : un quartz fumé

Calice orné de quartz fumé taillé

Perles de quartz fumé finement taillé

Index \underline{A} \underline{B} \underline{C} \underline{D} \underline{E} \underline{F} \underline{G} \underline{M} \underline{O} \underline{P} \underline{Q} \underline{S} \underline{T}

Minéral	Classe	Propriétés
1. Ambre	10. Organiques	Résine fossile des conifères , translucide, jaune, brune ou rouge clair, en grains ou nodules (contenant parfois des fossiles, en particulier des insectes bien conservés).
	Formés de molécules organiques	Remarque sur les « minéraux organiques ». La genèse de certaines substances organiques telles que les charbons, les bitumes et l'ambre est strictement liée à des phénomènes géologiques. Malgré leur origine végétale, ces matières appartiennent donc au règne minéral. Les charbons et bitumes présentent une composition chimique et des propriétés variables. Ils prennent naissance sur de grandes surfaces et occupent souvent de grands volumes. Ils sont donc considérés comme des roches organiques. L'ambre et quelques autres substances organiques ont des propriétés bien définies comparables à celles des minéraux. Comme ces derniers, ils se forment ponctuellement et sont par conséquent considérés comme des minéraux organiques. Parmi eux, on compte surtout l'ambre et la mellite, deux espèces associées aux charbons (lignites. tourbes, houilles).
2. Amiante	8. Inosilicates	Silicate de magnésium et de calcium : Ca ₂ Mg ₅ [Si ₄ O ₁₁ ,OH] ₂
	Silicates à tétraèdres [SiO ₄] ⁴ - disposés en chaînes droites , simples ou doubles	Tous deux synonymes, les termes amiante et asbeste désignent les minéraux finement fibreux à aspect feutré ou cotonneux : trémolite, actinote, serpentine, grünérite. On nomme aussi byssolites les trémolites et les actinotes cotonneuses. La Trémolite : Minéral du groupe des amphiboles, la trémolite forme une série isomorphe continue avec la ferro-actinote. Elle se présente en masses fibreuses à fibres parallèles ou radiées, en prismes allongés à capillaires et plus rarement en masses grenues. Les prismes bien individualisés sont rares, non terminés, aplatis, feuilletés, striés longitudinalement. Les fibres d'amiante, résistant à l'action d'un foyer ordinaire, ne fondent qu'au chalumeau et peuvent être tissées. L'amiante est dangereux pour la santé (pneumoconiose, cancer).

Minéral	Classe	Propriétés
3. Antimoine	1. Elément	L'élément chimique antimoine : Sb
		Semi-métal proche de l'arsenic, l'antimoine se rencontre généralement en grains, en nodules au en masses d'aspect lamellaire ou granulaire à structure plus ou moins radiaire et à surface fréquemment botryoïdale (en forme de grappe de raisin). Les rares cristaux n'excédent guère le centimètre et sont communément maclés. Leur habitus (forme cristalline) peut être pseudo-cubique, tabulaire et scalénoèdrique.
4. Apatite	7. Phosphates	Phosphate de calcium fluoré et chloré : Ca ₅ (PO ₄) ₃ (F, OH, CI)
	Minéraux caractérisés par	Phosphate de calcium en cristaux ou agrégats, à inclusions fréquentes de chlore (chlorapatite), de fluor, de silicium et de terres rares. L'apatite est utilisée dans les engrais artificiels, l'industrie chimique et celle des pierres fines.
	l'ion phosphate (PO ₄) ³ -	L'apatite cristallise généralement sous forme de prismes hexagonaux courts ou allongés terminés par des faces planes ou pyramidales.
		Gîtologie : des cristaux tabulaires se développent dans les pegmatites et les gîtes hydrothermaux. L'apatite forme généralement des masses compactes ou granulaires.

Index A B C D E F G M O P Q S T

Minéral	Classe	Propriétés
5. Aragonite	5. Carbonates	Variété cristalline du carbonate de calcium : CaCO ₃ .
		L'aragonite se présente en petits prismes ou plus souvent en aiguilles et fibres. Elle est effervescente, métastable à température ordinaire et se transforme en général en calcite. Par contre, elle est stable à haute pression dans des roches métamorphiques (à jadéite et glaucophane p. ex.).
	Minéraux caractérisés par	L'aragonite est un minéral trimorphe de la calcite et de la vatérite. Elle est l'espèce la plus fréquente du groupe de l'aragonite.
	l'ion carbonate	Les cristaux prismatiques non maclés à section transversale losangique se font rares. On rencontre plutôt des prismes pseudo-hexagonaux courts ou allongés : il s'agit en fait de macles par accolement ou par interpénétration de trois individus. Dans les cavités de filons d'aragonite se développent souvent de petites cristallisations pointues et trapues. On observe par ailleurs des gerbes d'aiguilles rayonnant sur gangue rocheuse. L'aragonite est également commune en concrétions : masses fibreuses stratifiées, concrétions fibreuses ressemblant au corail, encroûtements, agrégats botryoïdaux, stalactites et pisolithes fibroradiées.

Gîtologie: Minéral très répandu dans roches sédimentaires ou métamorphiques, dans les karsts et au voisinage des sources chaudes, dans la zone d'oxydation de nombreux gîtes hydrothermaux, dans les vacuoles des basaltes situées au voisinage des roches calcaires. L'aragonite est l'un des principaux constituants des coquillages et des coraux durs.

Index \underline{A} \underline{B} \underline{C} \underline{D} \underline{E} \underline{F} \underline{G} \underline{M} \underline{O} \underline{P} \underline{Q} \underline{S} \underline{T}

Minéral	Classe	Propriétés
6. Barytine	6. Sulfates	Sulfate de baryum : BaSO4.
	Minéraux caractérisés par l'ion sulfate (SO ₄) ² -	La barytine est l'espèce la plus fréquente du groupe de la baryte. La barytine se rencontre le plus souvent en masses clivables ou en cristaux losangiques tabulaires à lamellaires. Fréquemment maclés et accolés les uns aux autres, ces cristaux prennent la forme de lames avec des arêtes courbes {barytine crêtée}. On observe également des prismes losangiques plus ou moins allongés terminés en tête de tournevis (forme de cercueil) ou terminés par un pinacoïde. Certaines faces peuvent être striées ou cannelées. Les autres faciès sont des concrétions à structure fibreuse, des masses grenues cryptocristallines, des agrégats terreux et des roses des sables (baryte mêlée au sable du désert). La barytine peut être remplacée par divers carbonates (pseudornorphoses).
		Gîtologie: Minéral primaire des filons hydrothermaux de basse température à baryum, souvent associé à la fluorine, la galène et la sphalérite; en ciment consolidant des roches détritiques ou en nodules dans les argilites et calcaires sédimentaires; parfois au niveau des sources chaudes.
7. Béryl	8.Cyclosilicates	Silicate naturel d'aluminium et de béryllium cristallisé, classé en plusieurs variétés selon la couleur et la composition chimique. Béryl ordinaire. Béryl vert (émeraude), bleu clair (aigue-marine).
	Silicates formés de tétraèdres [SiO ₄] ⁴ - disposés en anneaux	Le béryl se présente en masses compactes ou en cristaux prismatiques bien formés et de grande taille. Ces prismes sont hexagonaux, parfois striés suivant leur allongement. Leur terminaison est plane et les arêtes sommitales sont fréquemment tronquées (forme en tonnelet). Les béryls de qualité se terminent parfois par une pyramide trapue. Certaines variétés forment des cristaux tabulaires épais.
		Gîtologie : Minéral fréquent des pegmatites, de certains micaschistes et de granulites ; également dans les calcaires à matière organique (calcaires bitumineux) modifiés par le métamorphisme régional, et dans les alluvions.

Minéral	Classe	Propriétés
8. Biotite(s)	8. Phyllosilicates	Silicates d'alumine ferromagnésiens. Exemple de formule : K (Mg, Fe) ₂₋₃ , Al ₁₋₀ [Si ₂ -3, Al ₂₋₁ O ₁₀ (OH, F) ₂]
	Silicates formés de tétraèdres [SiO ₄] ⁴ - disposés en feuillets.	Mica noir. Jusqu'en 1999, la biotite était considérée comme une espèce à part entière du groupe des micas. Depuis, le terme biotite continue d'être employé pour désigner les micas noirs (2 séries : annite - phlogopite et sidérophyllite – eastonite). Les biotites se présentent habituellement en écailles ou en grains micacés disséminés dans les roches magmatiques, ou en lits dans les roches métamorphiques. Elles se concentrent localement dans des enclaves, formant des ensembles désordonnés d'agrégats foliacés. Dans les pegmatites, les biotites forment de larges plaques feuilletées ou des cristaux pseudo-hexagonaux tabulaires, lamellaires ou plus rarement prismatiques trapus. Ces cristaux se clivent très facilement en lames flexibles et élastiques. Gîtologie : Minéral important de nombreuses roches magmatiques acides et intermédiaires (granites, syénites, diorites, roches volcaniques), des roches métamorphiques (gneiss, schistes, migmatites) et des pegmatites ; en paillettes altérées jaune laiton dans les alluvions et certaines roches détritiques.
9. Calcédoine	8. Tectosilicates	Silice : SiO ₂
	Silicates formés de tétraèdres [SiO ₄] ⁴ - liés entre eux par leurs sommets.	La calcédoine est un quartz à cristallisation très fine (cryptocristallin) formant des agrégats mamelonnés ou stalactitiques à surface lisse ou finement cristallisée. Cette forme de silice donne également naissance à des masses compactes. Les variétés de calcédoine sont nombreuses et de couleurs variées : calcédoine commune, jaspe, agate, chrysoprase, cornaline, onyx, sardoine.
		Gîtologie : En remplissage de filons hydrothermaux ; en géodes ou en masses issues d'une silification

secondaire (bois fossile...); dans les cavités des roches volcaniques.

Index \underline{A} \underline{B} \underline{C} \underline{D} \underline{E} \underline{F} \underline{G} \underline{M} \underline{O} \underline{Q} \underline{S} \underline{T}

Minéral	Classe	Propriétés
10. Calcite	5. Carbonates	Carbonate naturel de calcium, cristallisé : CaCO3
	Minéraux caractérisés par l'ion carbonate (CO ₃) ² -	La calcite est la principale espèce d'un groupe de carbonates rhomboédriques. Trimorphe de l'aragonite et de la vatérite, elle se présente principalement sous forme de couches ou de filons massifs et géodiques à clivage facile et parfait. Dans les géodes, les cristaux peuvent prendre des formes très diverses, les plus communes étant le rhomboèdre et le scalénoèdre. Les macles sont nombreuses et fréquentes. Les cristaux sont quelquefois aplatis en "tête de clou" ou prismatiques et terminés par une pyramide trigonale trapue. Parfois totalement ou partiellement pseudomorphosée en quartz, la calcite peut elle-même prendre la forme de minéraux qu'elle remplace. En milieu karstique, la calcite est concrétionnée : stalactites, stalagmites, colonnes, draperies, pisolithes Dans les marbres et carbonatites, la calcite est finement ou grossièrement grenue. Elle est fibreuse dans les coquillages et coraux durs dont elle représente, associée à l'aragonite, le principal constituant. Elle peut cristalliser en englobant des grains de sable ou cimenter les éléments de roches sédimentaires détritiques.
		Gîtologie: La calcite est un constituant essentiel de nombreuses roches carbonatées, surtout sédimentaires (calcaires divers, marnes), mais aussi métamorphiques (marbres, cornéennes) et magmatiques (carbonatées).La calcite cristallise également dans certains filons hydrothermaux.

Index \underline{A} \underline{B} \underline{C} \underline{D} \underline{E} \underline{F} \underline{G} \underline{M} \underline{O} \underline{Q} \underline{S} \underline{T}

Minéral	Classe	Propriétés
11. Cérusite	5. Carbonates	Carbonate de plomb : PbCO3
	Minéraux caractérisés par l'ion carbonate (CO ₃) ² -	Minéral fréquent du groupe de l'aragonite, la cérusite cristallise sous des formes très diverses : cristaux à nombreuses faces, tabulaires, isométriques, prismatiques allongés à aciculaires striés longitudinalement. Certains individus prismatiques ou bipyramidaux sont pseudo-hexagonaux. Les macles à 80°, simples, en étoile ou en réseau squelettiforme sont communes et caractéristiques. On rencontre aussi des spécimens massifs, grenus, fibreux, stalactitiques ou terreux et pulvérulents. La cérusite est parfois luminescente : fluorescence jaune sous UV à onde longue. Des inclusions de sulfures lui confèrent parfois une opacité et un éclat submétallique.
		Gîtologie: Minéral secondaire de la zone d'oxydation des gîtes de plomb, notamment associé à la galène, la pyromorphite, l'anglésite et la phosgénite; dans certaines roches carbonatées.
12. Chalcopyrite	2. Sulfures	Sulfure double de fer et de cuivre : CuFeS ₂
	Composé du soufre avec un métal ou un cation complexe	Massive, la chalcopyrite remplit partiellement ou totalement les fractures de roches, formant ainsi de denses réseaux filoniens appelés stockwerks. Si ces masses sont généralement compactes avec un aspect granulaire, elles peuvent également être réniformes ou botryoïdale. La chalcopyrite cristallise en tétraèdres parfais maclés et plus rarement en octaèdres. Certaines faces portent des stries. Les arêtes sont souvent arrondies. Les autres faciès sont des grains disséminés et des enduits à la surface de sulfosels de cuivre. La chalcopyrite est un bon conducteur du courant électrique. Elle s'irise par oxydation.
		Gîtologie : Minéral primaire de nombreux gîtes métallifères, y compris parfois dans la zone de cémentation ; dans les gîtes de contact (notamment dans les skarns) ; disséminée dans les roches plutoniques (surtout dans les granites et les gabbros ;dans certaines roches détritiques (grès, argilites).

Minéral	Classe	Propriétés
13. Chrysobéryl	4. Oxydes	Oxyde d'aluminium et de béryllium : Al ₂ Be O ₄
	Composé résultant de la combinaison d'un corps avec l'oxygène	Le chrysobéryl cristallise sous forme de prismes courts ou de cristaux tabulaires fréquemment maclés en V ou en hexagone. Les faces losangiques sont striées. L'alexandrite est la variété verte à la lumière naturelle et rouge en lumière artificielle. Le chrysobéryl s'observe également en grains et en masses. Il est parfois légèrement chatoyant à la manière de !'œil de chat et émet une lumière jaune-vert sous ultraviolet.
		Gîtologie : Principalement dans les pegmatites ; dans les marbres dolomitiques ; dans certains micaschistes et gneiss ; dans les alluvions.
14 Condiánito	9 Cyclosiliantes	Ciliante d'aluminium et de magnésium (Nac. Al. [Ci. Al.O.]
14. Cordiérite	8. Cyclosilicates	Silicate d'aluminium et de magnésium : Mg ₂ Al ₃ [Si ₅ Al 0 ₁₈]
	Silicates formés de tétraèdres [SiO ₄] ⁴ - disposés en anneaux	La cordiérite se trouve généralement en masses compactes, en grains arrondis dans des roches métamorphiques ou en galets dans les alluvions. Les cristaux nets sont peu fréquents et généralement altérés en mica. Il s'agit de prismes orthorhombiques trapus à 6 faces latérales, ou de macles pseudo-hexagonales à 12 faces latérales. Leurs terminaisons sont planes (pinacoïde). La cordiérite présente souvent un franc polychroïsme, et notamment un dichroïsme jaunâtre et bleu violacé. Des lamelles orientées d'hématite peuvent engendrer un dichroïsme bleu et rouge.
		Gîtologie: En grains dans les roches métamorphiques alumineuses (gneiss, schistes à cordiérite ou a andalousite, micaschistes, granulites, cornéennes); en cristaux dans certaines roches magmatiques (granites à deux micas, natte) ou dans certaines pegmatites; dans les dépôts alluvionnaires.

Minéral	Classe	Propriétés
15. Disthène	8. Nésosilicates	Silicate anhydre d'alumine : Al ₂ O (SiO ₄).
	Silicates formés de tétraèdres [SiO ₄] ⁴ - isolés	Le disthène cristallise sous forme de grands prismes allongés et aplatis, flexibles et plus ou moins striés transversalement. Ils peuvent être isolés dans la roche, groupés en masse, radiés ou orientés. Ils paraissent souvent fibreux. Leur teinte à dominante bleue n'est pas homogène. Certains individus sont fortement courbés. Les macles par accolement sur la face principale sont communes. Les macles en croix sont en revanche rares.
		Gîtologie : dans les roches alumineuses du métamorphisme général de haute pression (micaschistes, gneiss, éclogites) et dans les filons de quartz qui les traversent. Le disthène est souvent associé au staurotide et au grenat.
16. Epidote	8. Sorosilicates	Silicate hydraté de calcium, d'aluminium et de fer : Ca ₂ (Fe, Al) ₃ [(SiO ₄) (Si ₂ O ₇) O (OH)]
	Silicates formés de tétraèdres [SiO ₄] ⁴ - unis 2 par 2.	L'épidote ou pistachite (dénomination ancienne) est l'espèce la plus commune du groupe de l'épidote. On la rencontre en cristaux prismatiques trapus à aciculaires striés verticalement, en masses grossièrement fibreuses ou en agrégats grenus. Les prismes sont fréquemment aplatis ; ils peuvent être isolés, maclés ou groupés en agrégats subparallèles ou rayonnants. Certains individus ont des faces verticales cannelées à leurs intersections.
		Gîtologie: Produit d'altération des plagioclases calciques, pyroxènes, grenats, hornblendes, péridots Fréquente dans les fentes alpines et les roches légèrement calciques ayant subi un métamorphisme modéré (serpentinites, amphibolites), associée l'actinote, l'albite, l'axinite, la chlorite et au quartz; avec diopside et grenats dans certaines roches carbonatées affectées par un métamorphisme de contact.

Index \underline{A} \underline{B} \underline{C} \underline{D} \underline{E} \underline{F} \underline{G} \underline{M} \underline{O} \underline{Q} \underline{S} \underline{T}

Minéral	Classe	Propriétés
17. Fluorine (ou fluorite)	3. Halogénures	Fluorure de calcium : CaF ₂ La fluorine se présente en cristaux en cubes simples ou maclés, constituant des masses clivables,
	Sel ou ester obtenu par combinaison d'un halogène (élément chimique de la famille du chlore)	certaines faces montrant des stries, figurant des pyramides quadrangulaires surbaissées; l'éclat est vitreux un peu gras, et les colorations variées (jaune, vert, violet, bleu, noir) liées à des inclusions radioactives (U), ou de terres rares, ou de matières carbonées. Il y a souvent une double coloration, verte par réflexion et bleue par transparence. On la trouve également en masses concrétionnées formées de couches à contours dentelés, diversement colorées.
	avec un autre élément	Gîtologie: Elle est présente dans des roches magmatiques alcalines (granites, syénites, syénites néphéliniques et pegmatites correspondantes), et dans des filons avec barytine, blende, galène, calcite, quartz. C'est le minerai du fluor.
18. Fuschite	8. Phyllosilicates	Silicate d'aluminium et de potassium hydraté contenant du chrome. : KAl ₂ [Si ₃ AlO ₁₀ (OH,F) ₂] , Cr
	Silicates formés de tétraèdres [SiO ₄] ⁴ - disposés en feuillets.	Variété chromifère verdâtre de la muscovite.

Minéral	Classe	Propriétés
19. Galène	2. Sulfures	Sulfure de plomb : PbS
	Composés du soufre avec un métal ou un cation complexe	La galène se présente principalement en masses à clivage cubique, ou bien en cristaux cubiques. Ces cubes peuvent être isolés, imbriqués ou maclés. On observe aussi des combinaisons du cube et de l'octaèdre. Les octaèdres sont exceptionnels. Les autres faciès sont des masses d'aspect grenu ou d'aspect légèrement fibreux. Très brillante sur cassure fraîche, la galène ternit au contact de l'air. La galène s'altère en pyromorphite, en cérusite et en anglésite, plus rarement en mimétite, en phosgénite, en lithargite (enduits jaunes d'oxyde de plomb PbO) ou en minium (enduits pulvérulents rouges d'oxyde Pb ₃ O ₄). Gîtologie : Minéral primaire abondant des filons hydrothermaux, associé surtout à la baryte, la fluorine, la sphalérite, la pyrite et la chalcopyrite ; rarement secondaire, elle peut remplacer la pyromorphite (pseudomorphose) ; en imprégnation dans des roches sédimentaires gréseuses, calcaires ou volcano-sédimentaires.
20. Magné	itite 4. Oxydes	Minerai noir, oxyde magnétique de fer : Fe ₃ O ₄
	Composé résultant de la combinaison d'un corps avec l'oxygène	La magnétite appartient au groupe du spinelle. Elle est fréquente en masses grenues ou en grains disséminés dans les roches. Elle cristallise sous forme d'octaèdres communément maclés (macle du spinelle) et plus rarement en rhombododécaèdres à faces striées suivant leur grande diagonale, ou en cubes. Les cristaux se couvrent par oxydation d'un enduit brunâtre terne. Ils peuvent évoluer égaiement en hématite : les pseudomorphes ainsi formées sont nommées martites.
		Gîtologie : Le plus souvent disséminée dans les roches magmatiques et métamorphiques ; en concentration dans des dépôts alluvionnaires ou les gîtes de ségrégation ; dans certains filons de haute température et dans

les fentes alpines.

Index \underline{A} \underline{B} \underline{C} \underline{D} \underline{E} \underline{F} \underline{G} \underline{M} \underline{O} \underline{Q} \underline{S} \underline{T}

Minéral	Classe	Propriétés
21. Marcassite (ou marcasite)	2. Sulfures	Sulfure de fer : FeS ₂
(camaraare)	Composés du soufre avec un métal ou un cation complexe	Dimorphe de la pyrite, la marcassite prend fréquemment la forme de concrétions à structure fibroradiées : stalactites et nodules sphériques à surface mamelonnée ou botryoïdale. Ces agrégats présentent une odeur de soufre. Les cristaux individuels sont tabulaires et striés, exceptionnellement prismatiques, pyramidaux ou aciculaires. Les macles sont communes : macle simple en fer de lance, macle multiple dentelée en « crête de coq » et macle cyclique. La marcassite existe également en pseudomorphes de pyrite ou de pyrrhotite, en fossiles et en masses compactes ou grenues formant parfois des couches.La marcassite s'altère rapidement en sulfate ferreux en libérant de l'acide sulfurique. Elle peut aussi s'altérer en limonite.
		Gîtologie : Minéral d'origine hydrothermale de basse température, fréquent dans les roches sédimentaires : craies, argilites, lignites, calcaires bitumineux ; cristallisation tardive dans divers filons hydrothermaux métallifères.
22. Muscovite	8. Phyllosilicates	Silicate d'aluminium et de potassium hydraté: KAI ₂ [Si ₃ AIO ₁₀ (OH,F) ₂]
	Silicates formés de tétraèdres [SiO ₄] ⁴ - disposés en feuillets.	Muscovite ou mica blanc. La muscovite est une espèce importante du groupe des micas. On la rencontre en grains feuilletés disséminés dans des roches magmatiques, en fines paillettes orientées dans les roches détritiques, en agrégats foliacés et en cristaux dans les pegmatites, ou en lits dans les roches métamorphiques. Les agrégats micacés présentent parfois des surfaces arrondies ou mamelonnées. Pseudo-hexagonaux et d'aspect feuilleté, les cristaux sont tabulaires à lamellaires, plus rarement prismatiques ou coniques. La muscovite se clive facilement en lamelles flexibles et élastiques.
		Gîtologie - Minéral primaire majeur des roches métamorphiques et magmatiques acides : granites, pegmatites, gneiss, micaschistes Dans les roches sédimentaires détritiques la muscovite dérive par altération de nombreux minéraux : feldspaths, andalousite, béryl

391

Index \underline{A} \underline{B} \underline{C} \underline{D} \underline{E} \underline{F} \underline{G} \underline{M} \underline{O} \underline{P} \underline{Q} \underline{S} \underline{T}

Minéral	Classe	Propriétés
23.Orthose	8. Tectosilicates	Silicate d'aluminium et de potassium : K [Si ₃ AlO ₈]
	Silicates formés de tétraèdres [SiO ₄] ⁴ - liés entre eux par leurs sommets.	L'orthose est une espèce importante du groupe des feldspaths. C'est est un feldspath potassique dimorphe du microcline, de couleur blanche, rose ou rouge, abondant dans les granites. Il se présente en masses clivables et plus ou moins granulaires ou en grands cristaux prismatiques trapus ou allongés d'aspect pseudo-orthorhombique, voire pseudo-quadratique. Il est fréquemment maclé Carlsbad. Gîtologie: C'est un minéral très commun des granites, des granodiorites, des pegmatites. Il s'y présente souvent en grands cristaux (plusieurs centimètres dans des granites, dits alors à « dents de cheval »); présent dans les roches métamorphiques profondes (gneiss); en fragments de cristaux dans les arkoses.
24. Pechblende	4. Oxydes	Minerai d'uranium formé essentiellement d'uraninite de formule UO ₂ .
	Composés résultant de la combinaison d'un corps avec l'oxygène	Principal minerai d'uranium et de radium, composé surtout d'uranite UO_2 et d'autres oxydes (ex. UO_3), en masses compactes plus ou moins concrétionnées, à éclat de poix, noir velouté, de forte densité. Par oxydation et hydratation, la pechblende s'altère en gummite, un minerai dans lequel se mélangent divers minéraux uranifères de couleur jaune, orange ou brunâtre.
		Gîtologie: On la trouve dans des pegmatites granitiques, et dans des filons hydrothermaux

Index \underline{A} \underline{B} \underline{C} \underline{D} \underline{E} \underline{F} \underline{G} \underline{M} \underline{O} \underline{P} \underline{Q} \underline{S} \underline{T}

Minéral	Classe	Propriétés
25. Pyrite	2. Sulfures	Sulfure de fer : FeS ₂
	Composés du soufre avec un métal ou un cation complexe.	La pyrite est un sulfure de fer, du système cubique, qui se présente sous des formes très diverses : ses cristaux sont le plus souvent cubiques, en cubes parfois à faces striées (pyrite triglyphe), en dodécaèdres pentagonaux (ou pyritoèdres), à macles fréquentes (la macle de la croix de fer par interpénétration de deux dodécaèdres est caractéristiques mais rare) caractéristique).La pyrite présente un éclat métallique, jaune vif, brun par altération (gœthite). La pyrite est un sulfure dimorphe de la marcassite.
		Gîtologie : Elle est largement répandue en masses, veines, imprégnations et cristaux isolés dans des filons hydrothermaux, et diverses roches magmatiques métamorphiques et sédimentaires (riches en matière organique pour ces dernières). La pyrite est le minéral métallique le plus abondant de la planète.
26. Pyroxènes	8. Inosilicates Silicates à	Silicates ferromagnésiens avec en proportions variables Ca et Na. Exemple de formule chimique : (Mg, Fe, Ca) (Mg, Fe) (SiO ₃) ₂
	tétraèdres [SiO ₄] ⁴ - disposés en chaînes droites , simples ou doubles.	Les pyroxènes forment une famille complexe de minéraux, en prismes plus ou moins allongés, à sections rectangulaires à angles tronqués montrant en général deux clivages presque orthogonaux, rarement fibreux, à couleur noire à éclat métallique, parfois verte, violacée, grise; ils peuvent être maclés et zonés. La classification, complexe, est liée aux systèmes cristallins, et aux variations progressives des compositions chimiques.
		Gîtologie: Les pyroxènes sont des minéraux essentiels des roches magmatiques et métamorphiques.

Index A B C D E F G M O P Q S T

Minéral Classe

Propriétés

27. Quartz

8. Tectosilicates Silice, dioxyde de silicium: SiO₂

Minéral le plus abondant de l'écorce terrestre et membre principal de la famille de la silice, le quartz se rencontre surtout en masses filoniennes et en grains dans de nombreuses roches.

Le quartz se présente en cristaux xénomorphes limpides ou troublés par des inclusions, à cassure conchoïdale un peu grasse (aspect de gros sel), ou en cristaux automorphes prismatiques et souvent bipyramidés, à éclat vitreux, sans clivage visible mais à faces parfois finement striées transversalement.

Il cristallise communément sous les formes suivantes : prisme hexagonal régulier terminé par deux pyramides hexagonales régulières, prisme hexagonal irrégulier à terminaisons biseautées, prisme pseudo-hexagonal terminé par deux " pyramides trigonales " correspondant en réalité aux sommets d'un rhomboèdre, prisme pseudo-hexagonal terminé par deux pyramides pseudo-hexagonales, ces pointes sont composées de deux rhomboèdres dont le développement peut être équivalent ou différent. Elles sont souvent dissymétriques. La plupart du temps, ces cristaux sont accolés les uns aux autres de telle sorte que les faces des pyramides sont seules visibles.

Silicates formés de tétraèdres [SiO₄]⁴-Liés entre eux par leurs sommets.

Variétés diverses:

- cristal de roche ou quartz hyalin, incolore et translucide, dans les filons ou géodes ;
- améthyste violette à traces de Mn, Fe3+;
- œil de chat (ou de tigre) à reflets chatoyants (inclusions de fibres de type amiante);
- quartz bleu à inclusions d'aiguilles de rutile ;
- quartz rose, ou rouge, à traces de Mn, B, Li, hématite (hyacinthe de Compostelle);
- quartz citrine à traces d'hydroxydes ferriques ; quartz enfumé à éléments radioactifs.

Gîtologie : C'est un minéral très fréquent des roches magmatiques plutoniques et volcaniques et des roches métamorphiques, saturées en silice. Pour que le quartz puisse apparaître dans une roche magmatique, il faut que la masse de SiO_2 atteigne 55 à 60 % de celle de la roche; si $SiO_2 > 70$ %, le quartz pourra former 30 % en volume de la roche. Sa dureté (il raye l'acier et le verre) et son insolubilité en font un élément résistant, très fréquent dans les roches sédimentaires détritiques (sables. grès, ...).

$\mathsf{Index}\ \, \underline{\mathsf{A}}\ \, \underline{\mathsf{B}}\ \, \underline{\mathsf{C}}\ \, \underline{\mathsf{D}}\ \, \underline{\mathsf{E}}\ \, \underline{\mathsf{F}}\ \, \underline{\mathsf{G}}\ \, \underline{\mathsf{M}}\ \, \underline{\mathsf{O}}\ \, \underline{\mathsf{P}}\ \, \underline{\mathsf{Q}}\ \, \underline{\mathsf{S}}\ \, \underline{\mathsf{T}}$

Minéral	Classe	Propriétés
28. Staurotide	8. Nésosilicates	Silicate hydraté d'aluminium, de fer, de magnésium : (Fe, Mg) ₂ Al ₉ (Si, Al) ₄ O ₂₂ (OH) ₂
	Silicates formés de tétraèdres [SiO ₄] ⁴ - Isolés.	La staurotide forme des prismes trapus ou allongés à section losangique et terminaisons planes. ils sont généralement aplatis et plus ou moins bien formés. Les macles par interpénétration sont très fréquentes : macles de Saint-André (à 60°) et macles en Croisette de Bretagne (à 90°). Les faces des cristaux sont souvent altérées en mica. Les autres faciès sont massifs ou grenus.
		Gîtologie: Minéral primaire de roches ayant subi un fort métamorphisme régional: micaschistes, gneiss, et parfois granulites. Il s'associe notamment au disthène, au grenat et à l'andalousite.
29.Stibine	2.Sulfures	Sulfure d'antimoine (Sb) : Sb ₂ S ₃
	Composés du soufre avec un métal ou un cation complexe.	La stibine se rencontre essentiellement en agrégats fibreux et en masses cristallines d'aspect lamellaire à granulaire, avec un éclat métallique, gris acier à gris de plomb bleuâtre. Dans les géodes, elle développe des cristaux aciculaires aplatis, striés suivant leur allongement et souvent cannelés parallèlement aux stries. Généralement fragiles (légèrement flexibles lorsqu'ils sont très fins), ces cristaux peuvent être isolés, radiés ou groupés en gerbe. lis sont parfois courbés (fragmentés et ressoudés). Ce minéral a une faible dureté, et sa fusion est facile (il fond à la bougie avec une flamme bleu verdâtre). Gîtologie: C'est le principal minerai d'antimoine; il constitue surtout des filons, liés à des roches magmatiques acides, à gangue quartzeuse, et est associé à d'autres minerais (blende, mispickel, cinabre).

Minéral	Classe	Propriétés
30.Tourmaline	8.Cyclosilicates	Silicate hydrate de bore et de nombreux éléments (Ca, K, Na, Al, Fe, Li, Mg, Mn, Cr, V) Formule très complexe : $\alpha \beta_3 \chi_6 [(OH)_4 / (BO3)_3 / Si_6O_{18}]$ avec : α = Ca, K, Na; β = A I, Fe, Li, Mg, Mn, et χ = A I, Cr, Fe, V.
	Silicates formés de tétraèdres [SiO ₄] ⁴ - disposés en anneaux	La tourmaline cristallise sous forme de prismes allongés trigonaux, striés suivant leur allongement, à faces latérales souvent courbes. Ces cristaux sont fréquemment brisés, puis ressoudés. Ils peuvent être isolés ou radiés. On rencontre plus rarement des prismes courts (voire aplatis), des cristaux presque isométriques et des masses compactes. La tourmaline est fortement piézo-électrique et pyroélectrique.
	ailicaux	Les principales espèces du groupe de la tourmaline sont les suivantes : Schörl (noire), Dravite (brune à verte).
		Gîtologie : Minéral fréquent des pegmatites granitiques ; minéral accessoire de certains granites, gneiss, micaschistes et calcaires métamorphiques ; dans les alluvions et roches sédimentaires détritiques ; parfois dans les fentes alpines.

Association Vendéenne de Géologie

Inventaire des minéraux vendéens

CD - Diaporama

Collections minéralogiques de G. Bertet, A. Duret, J. Giraudeau, M. Jeanneau, C. Mahu et G. Mérand

Photographies : J. Chauvet et D. Loizeau - Réalisation : J. Chauvet

© AVG 85 - 2013

